Generative Data Intelligence

Why interference phenomena do not capture the essence of quantum theory


Lorenzo Catani1, Matthew Leifer2, David Schmid3, and Robert W. Spekkens4

1Electrical Engineering and Computer Science Department, Technische Universität Berlin, 10587 Berlin, Germany
2Institute for Quantum Studies and Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, 92866, USA
3International Centre for Theory of Quantum Technologies, University of Gdansk, 80-308 Gdansk, Poland
4Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario Canada N2L 2Y5

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum interference phenomena are widely viewed as posing a challenge to the classical worldview. Feynman even went so far as to proclaim that they are the $textit{only mystery}$ and the $textit{basic peculiarity}$ of quantum mechanics. Many have also argued that basic interference phenomena force us to accept a number of radical interpretational conclusions, including: that a photon is neither a particle nor a wave but rather a Jekyll-and-Hyde sort of entity that toggles between the two possibilities, that reality is observer-dependent, and that systems either do not have properties prior to measurements or else have properties that are subject to nonlocal or backwards-in-time causal influences. In this work, we show that such conclusions are not, in fact, forced on us by basic interference phenomena. We do so by describing an alternative to quantum theory, a statistical theory of a classical discrete field (the `toy field theory’) that reproduces the relevant phenomenology of quantum interference while rejecting these radical interpretational claims. It also reproduces a number of related interference experiments that are thought to support these interpretational claims, such as the Elitzur-Vaidman bomb tester, Wheeler’s delayed-choice experiment, and the quantum eraser experiment. The systems in the toy field theory are field modes, each of which possesses, at all times, $both$ a particle-like property (a discrete occupation number) and a wave-like property (a discrete phase). Although these two properties are jointly possessed, the theory stipulates that they cannot be jointly $known$. The phenomenology that is generally cited in favour of nonlocal or backwards-in-time $textit{causal influences}$ ends up being explained in terms of $inferences$ about distant or past systems, and all that is observer-dependent is the observer’s $knowledge$ of reality, not reality itself.

Contributed talk by Lorenzo Catani at QIP 2023:

[embedded content]

Contributed talk by Robert Spekkens at the “Conference on Quantum Information and Quantum Control IX” — University of Toronto 2022:

[embedded content]

Invited talk by Lorenzo Catani at the “Physics and the first-person perspective” Essentia Foundation conference 2022 :

[embedded content]

Seminar by Lorenzo Catani at IQOQI Vienna 2022:

[embedded content]

Contributed talk by Lorenzo Catani at QPL 2022:

[embedded content]

► BibTeX data

► References

[1] Richard P. Feynman, Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures on Physics. Addison-Wesley world student series, 1961-1963. URL: https:/​/​​.

[2] Niels Bohr. Discussion with einstein on epistemological problems in atomic physics. In Paul Arthur Schilpp, editor, The Library of Living Philosophers, Volume 7. Albert Einstein: Philosopher-Scientist, pages 199–241. Open Court, 1949. URL: https:/​/​​rec/​BOHDWE.

[3] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Reconstruction of gaussian quantum mechanics from liouville mechanics with an epistemic restriction. Phys. Rev. A, 86:012103, Jul 2012. doi:https:/​/​​10.1103/​PhysRevA.86.012103.

[4] Avshalom C. Elitzur and Lev Vaidman. Quantum mechanical interaction-free measurements. Found. Phys., 23(7):987–997, Jul 1993. doi:https:/​/​​10.1007/​BF00736012.

[5] John Archibald Wheeler. The “past” and the “delayed-choice” double-slit experiment. In A.R. Marlow, editor, Mathematical Foundations of Quantum Theory, pages 9–48. Academic Press, 1978. doi:https:/​/​​10.1016/​B978-0-12-473250-6.50006-6.

[6] Ulrich Mohrhoff. Restoration of interference and the fallacy of delayed choice: Concerning an experiment proposed by englert, scully, and walther. Amer. J. Phys., 64(12):1468–1475, 1996. doi:https:/​/​​10.1119/​1.18411.

[7] Ulrich Mohrhoff. Objectivity, retrocausation, and the experiment of englert, scully, and walther. Amer. J. Phys., 67(4):330–335, 1999. doi:https:/​/​​10.1119/​1.19258.

[8] Marlan O. Scully and Kai Drühl. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A, 25:2208–2213, Apr 1982. doi:https:/​/​​10.1103/​PhysRevA.25.2208.

[9] Robert W. Spekkens. Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A, 75:032110, Mar 2007. doi:https:/​/​​10.1103/​PhysRevA.75.032110.

[10] Robert W. Spekkens. Quasi-quantization: Classical statistical theories with an epistemic restriction. In Giulio Chiribella and Robert W. Spekkens, editors, Quantum Theory: Informational Foundations and Foils, pages 83–135. Springer Netherlands, Dordrecht, 2016. doi:https:/​/​​10.1007/​978-94-017-7303-4_4.

[11] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology, 1997. doi:https:/​/​​10.7907/​rzr7-dt72.

[12] Lorenzo Catani and Dan E. Browne. Spekkens’ toy model and its relationship with stabiliser quantum mechanics. New J. Phys., 96(5):052112, 2017. doi:https:/​/​​10.1103/​PhysRevA.96.052112.

[13] Lorenzo Catani and Dan E. Browne. State-injection schemes of quantum computation in spekkens’ toy theory. Phys. Rev. A, 98:052108, Nov 2018. doi:https:/​/​​10.1103/​PhysRevA.98.052108.

[14] S. J. van Enk. A toy model for quantum mechanics. Found. Phys., 37(10):1447–1460, 2007. URL: https:/​/​​10.1007/​s10701-007-9171-3, doi:https:/​/​​10.1007/​s10701-007-9171-3.

[15] Matthew F. Pusey. Stabilizer notation for spekkens’toy theory. Found. Phys., 42(5):688–708, 2012. doi:https:/​/​​10.1007/​s10701-012-9639-7.

[16] Jan-Åke Larsson. A contextual extension of spekkens’ toy model. AIP Conf. Proc., 1424(1):211–220, 2012. doi:https:/​/​​10.1063/​1.3688973.

[17] Pawel Blasiak. Quantum cube: A toy model of a qubit. Phys. Lett. A, 377(12):847–850, 2013. doi:https:/​/​​10.1016/​j.physleta.2013.01.045.

[18] Leonardo Disilvestro and Damian Markham. Quantum protocols within Spekkens’ toy model. Phys. Rev. A, 95(5):052324, 2017. doi:https:/​/​​10.1103/​PhysRevA.95.052324.

[19] Ladina Hausmann, Nuriya Nurgalieva, and Lidia del Rio. A consolidating review of spekkens’ toy theory. arXiv:2105.03277, 2021. doi:https:/​/​​10.48550/​arXiv.2105.03277.

[20] William F. Braasch Jr. and William K. Wootters. A quantum prediction as a collection of epistemically restricted classical predictions. Quantum, 6:659, February 2022. doi:https:/​/​​10.22331/​q-2022-02-21-659.

[21] David Bohm. A suggested interpretation of the quantum theory in terms of “hidden” variables. i. Phys. Rev., 85:166–179, Jan 1952. doi:https:/​/​​10.1103/​PhysRev.85.166.

[22] Pawel Blasiak. Local model of a qubit in the interferometric setup. New J. Phys., 17(11):113043, nov 2015. doi:https:/​/​​10.1088/​1367-2630/​17/​11/​113043.

[23] Lucien Hardy. Quantum mechanics, local realistic theories, and lorentz-invariant realistic theories. Phys. Rev. Lett., 68:2981–2984, May 1992. doi:https:/​/​​10.1103/​PhysRevLett.68.2981.

[24] Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, and Robert W. Spekkens. Aspects of the phenomenology of interference that are genuinely nonclassical. Phys. Rev. A, 108:022207, Aug 2023. doi:https:/​/​​10.1103/​PhysRevA.108.022207.

[25] Robert Spekkens. Reassessing claims of nonclassicality for quantum interference phenomena, jun 2016. doi:https:/​/​​10.48660/​16060102.

[26] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3):195–200, 1964. doi:https:/​/​​10.1103/​PhysicsPhysiqueFizika.1.195.

[27] J. S. Bell. On the impossible pilot wave. Found. Phys., 12(10):989–999, 1982. doi:https:/​/​​10.1007/​BF01889272.

[28] J. S. Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, second edition edition, 2011. doi:https:/​/​​10.1017/​CBO9780511815676.

[29] Ludwig Zehnder. Ein neuer interferenzrefraktor. Zeitschrift fur Instrumentenkunde, 11:275–285, 1891. URL: https:/​/​​(S(vtj3fa45qm1ean45%20vvffcz55))/​reference/​referencespapers.aspx?referenceid=2681763.

[30] Ludwig Mach. Ueber einen interferenzrefraktor. Zeitschrift fur Instrumentenkunde, 12:89–93, 1892. URL: https:/​/​​(S(351jmbntvnsjt1aadkposzje))/​reference/​referencespapers.aspx?referenceid=2826643.

[31] Berthold-Georg Englert. Remarks on Some Basic Issues in Quantum Mechanics. Zeitschrift Naturforschung Teil A, 54(1):11–32, January 1999. doi:https:/​/​​10.1515/​zna-1999-0104.

[32] R Y Chiao, P G Kwiat, and A M Steinberg. Quantum non-locality in two-photon experiments at berkeley. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 7(3):259–278, jun 1995. doi:https:/​/​​10.1088/​1355-5111/​7/​3/​006.

[33] Yakir Aharonov, Eliahu Cohen, Fabrizio Colombo, Tomer Landsberger, Irene Sabadini, Daniele C. Struppa, and Jeff Tollaksen. Finally making sense of the double-slit experiment. Proc. Nat. Acad. Scie., 114(25):6480–6485, 2017. doi:https:/​/​​10.1073/​pnas.1704649114.

[34] C. Philippidis, C. Dewdney, and B. J. Hiley. Quantum interference and the quantum potential. Il Nuovo Cimento B (1971-1996), 52(1):15–28, 1979. doi:https:/​/​​10.1007/​BF02743566.

[35] David Schmid, John H. Selby, and Robert W. Spekkens. Unscrambling the omelette of causation and inference: The framework of causal-inferential theories. arXiv:2009.03297, 2021. doi:https:/​/​​10.48550/​arXiv.2009.03297.

[36] Roger Penrose. Shadows of the Mind: A Search for the Missing Science of Consciousness. Vintage, 1994.

[37] Rafael Chaves, Gabriela Barreto Lemos, and Jacques Pienaar. Causal modeling the delayed-choice experiment. Phys. Rev. Lett., 120:190401, May 2018. doi:https:/​/​​10.1103/​PhysRevLett.120.190401.

[38] Marian O. Scully, Berthold-Georg Englert, and Herbert Walther. Quantum optical tests of complementarity. Nature, 351(6322):111–116, 1991. doi:https:/​/​​10.1038/​351111a0.

[39] Rachel Hillmer and Paul Kwiat. A do-it-yourself quantum eraser. Scie. Amer., 296(5):90–95, 2007. doi:https:/​/​​10.1038/​scientificamerican0507-90.

[40] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777–780, May 1935. doi:https:/​/​​10.1103/​PhysRev.47.777.

[41] Thomas J. Herzog, Paul G. Kwiat, Harald Weinfurter, and Anton Zeilinger. Complementarity and the quantum eraser. Phys. Rev. Lett., 75:3034–3037, Oct 1995. doi:https:/​/​​10.1103/​PhysRevLett.75.3034.

[42] Robert W. Spekkens. The ontological identity of empirical indiscernibles: Leibniz’s methodological principle and its significance in the work of Einstein. arXiv:1909.04628, August 2019. doi:https:/​/​​10.48550/​arXiv.1909.04628.

[43] Lorenzo Catani and Matthew Leifer. A mathematical framework for operational fine tunings. Quantum, 7:948, March 2023. doi:https:/​/​​10.22331/​q-2023-03-16-948.

[44] S. Kochen and E.P. Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17:59–87, 1967. doi:https:/​/​​10.1512/​iumj.1968.17.17004.

[45] R. W. Spekkens. Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A, 71:052108, May 2005. doi:https:/​/​​10.1103/​PhysRevA.71.052108.

[46] Robert W. Spekkens. Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett., 101:020401, Jul 2008. doi:https:/​/​​10.1103/​PhysRevLett.101.020401.

[47] David Schmid, John H Selby, Matthew F Pusey, and Robert W Spekkens. A structure theorem for generalized-noncontextual ontological models. arXiv preprint arXiv:2005.07161, 2020. doi:https:/​/​​10.48550/​arXiv.2005.07161.

[48] David Schmid, John H. Selby, Elie Wolfe, Ravi Kunjwal, and Robert W. Spekkens. Characterization of noncontextuality in the framework of generalized probabilistic theories. PRX Quantum, 2:010331, Feb 2021. doi:https:/​/​​10.1103/​PRXQuantum.2.010331.

[49] Farid Shahandeh. Contextuality of general probabilistic theories. PRX Quantum, 2:010330, Feb 2021. doi:https:/​/​​10.1103/​PRXQuantum.2.010330.

[50] Ravi Kunjwal and Robert W. Spekkens. From the Kochen-Specker Theorem to Noncontextuality Inequalities without Assuming Determinism. Phys. Rev. Lett., 115(11):110403, 2015. doi:https:/​/​​10.1103/​PhysRevLett.115.110403.

[51] Iman Marvian. Inaccessible information in probabilistic models of quantum systems, non-contextuality inequalities and noise thresholds for contextuality. arXiv preprint arXiv:2003.05984, 2020. doi:https:/​/​​10.48550/​arXiv.2003.05984.

[52] Roberto D. Baldijão, Rafael Wagner, Cristhiano Duarte, Bárbara Amaral, and Marcelo Terra Cunha. Emergence of noncontextuality under quantum darwinism. PRX Quantum, 2:030351, Sep 2021. doi:https:/​/​​10.1103/​PRXQuantum.2.030351.

[53] Michael D. Mazurek, Matthew F. Pusey, Ravi Kunjwal, Kevin J. Resch, and Robert W. Spekkens. An experimental test of noncontextuality without unphysical idealizations. Nature Communications, 7(1):ncomms11780, 2016. doi:https:/​/​​10.1038/​ncomms11780.

[54] Michael D. Mazurek, Matthew F. Pusey, Kevin J. Resch, and Robert W. Spekkens. Experimentally bounding deviations from quantum theory in the landscape of generalized probabilistic theories. PRX Quantum, 2:020302, Apr 2021. doi:https:/​/​​10.1103/​PRXQuantum.2.020302.

[55] Ravi Kunjwal and Robert W. Spekkens. From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities. Phys. Rev. A, 97(5):052110, 2018. doi:https:/​/​​10.1103/​PhysRevA.97.052110.

[56] Matthew F. Pusey. Robust preparation noncontextuality inequalities in the simplest scenario. Phys. Rev. A, 98:022112, Aug 2018. doi:https:/​/​​10.1103/​PhysRevA.98.022112.

[57] David Schmid, Robert W. Spekkens, and Elie Wolfe. All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed set of operational equivalences. Phys. Rev. A, 97:062103, June 2018. doi:https:/​/​​10.1103/​PhysRevA.97.062103.

[58] Robert W. Spekkens, D. H. Buzacott, A. J. Keehn, Ben Toner, and G. J. Pryde. Preparation Contextuality Powers Parity-Oblivious Multiplexing. Phys. Rev. Lett., 102:010401, January 2009. doi:https:/​/​​10.1103/​PhysRevLett.102.010401.

[59] André Chailloux, Iordanis Kerenidis, Srijita Kundu, and Jamie Sikora. Optimal bounds for parity-oblivious random access codes. New Journal of Physics, 18(4):045003, apr 2016. doi:https:/​/​​10.1088/​1367-2630/​18/​4/​045003.

[60] Andris Ambainis, Manik Banik, Anubhav Chaturvedi, Dmitry Kravchenko, and Ashutosh Rai. Parity oblivious d-level random access codes and class of noncontextuality inequalities. Quantum Information Processing, 18(4):111, 2019. doi:https:/​/​​10.1007/​s11128-019-2228-3.

[61] Debashis Saha, Paweł Horodecki, and Marcin Pawłowski. State independent contextuality advances one-way communication. New J. Phys., 21(9):093057, September 2019. doi:https:/​/​​10.1088/​1367-2630/​ab4149.

[62] Robert Raussendorf. Contextuality in measurement-based quantum computation. Phys. Rev. A, 88:022322, Aug 2013. doi:https:/​/​​10.1103/​PhysRevA.88.022322.

[63] Matty J Hoban, Earl T Campbell, Klearchos Loukopoulos, and Dan E Browne. Non-adaptive measurement-based quantum computation and multi-party bell inequalities. New Journal of Physics, 13(2):023014, feb 2011. doi:https:/​/​​10.1088/​1367-2630/​13/​2/​023014.

[64] David Schmid, Haoxing Du, John H. Selby, and Matthew F. Pusey. Uniqueness of noncontextual models for stabilizer subtheories. Phys. Rev. Lett., 129:120403, Sep 2022. doi:https:/​/​​10.1103/​PhysRevLett.129.120403.

[65] David Schmid and Robert W. Spekkens. Contextual advantage for state discrimination. Phys. Rev. X, 8:011015, Feb 2018. doi:https:/​/​​10.1103/​PhysRevX.8.011015.

[66] Matteo Lostaglio and Gabriel Senno. Contextual advantage for state-dependent cloning. Quantum, 4:258, April 2020. doi:https:/​/​​10.22331/​q-2020-04-27-258.

[67] Matteo Lostaglio. Certifying Quantum Signatures in Thermodynamics and Metrology via Contextuality of Quantum Linear Response. Phys. Rev. Lett., 125:230603, Dec 2020. doi:https:/​/​​10.1103/​PhysRevLett.125.230603.

[68] Matthew F. Pusey. Anomalous weak values are proofs of contextuality. Phys. Rev. Lett., 113:200401, Nov 2014. doi:https:/​/​​10.1103/​PhysRevLett.113.200401.

[69] Ravi Kunjwal, Matteo Lostaglio, and Matthew F. Pusey. Anomalous weak values and contextuality: Robustness, tightness, and imaginary parts. Phys. Rev. A, 100:042116, Oct 2019. doi:https:/​/​​10.1103/​PhysRevA.100.042116.

[70] Shiv Akshar Yadavalli and Ravi Kunjwal. Contextuality in entanglement-assisted one-shot classical communication. Quantum, 6:839, October 2022. doi:https:/​/​​10.22331/​q-2022-10-13-839.

[71] John S. Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447–452, Jul 1966. doi:https:/​/​​10.1103/​RevModPhys.38.447.

[72] Rafael Wagner, Anita Camillini, and Ernesto F Galvão. Coherence and contextuality in a mach-zehnder interferometer. arXiv preprint arXiv:2210.05624, 2022. doi:https:/​/​​10.48550/​arXiv.2210.05624.

[73] Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, and Robert W. Spekkens. What is nonclassical about uncertainty relations? Phys. Rev. Lett., 129:240401, Dec 2022. doi:https:/​/​​10.1103/​PhysRevLett.129.240401.

[74] Angela Karanjai, Eric G Cavalcanti, Stephen D Bartlett, and Terry Rudolph. Weak values in a classical theory with an epistemic restriction. New Journal of Physics, 17(7):073015, jul 2015. doi:https:/​/​​10.1088/​1367-2630/​17/​7/​073015.

[75] Yakir Aharonov, David Z. Albert, and Lev Vaidman. How the result of a measurement of a component of the spin of a spin-1/​2 particle can turn out to be 100. Phys. Rev. Lett., 60:1351–1354, Apr 1988. doi:https:/​/​​10.1103/​PhysRevLett.60.1351.

[76] E.T. Jaynes. in Complexity, Entropy, and the Physics of Information edited by W. H. Zurek, page 381, 1990. doi:https:/​/​​10.1201/​9780429502880.

[77] David Schmid, Katja Ried, and Robert W. Spekkens. Why initial system-environment correlations do not imply the failure of complete positivity: A causal perspective. Phys. Rev. A, 100:022112, Aug 2019. doi:https:/​/​​10.1103/​PhysRevA.100.022112.

[78] David Schmid. Guiding our interpretation of quantum theory by principles of causation and inference. PhD thesis, University of Waterloo, 2021. URL: http:/​/​​10012/​17136.

[79] Christopher A Fuchs. Quantum mechanics as quantum information (and only a little more). arXiv preprint quant-ph/​0205039, 2002. doi:https:/​/​​10.48550/​arXiv.quant-ph/​0205039.

[80] Nicholas Harrigan and Robert W. Spekkens. Einstein, Incompleteness, and the Epistemic View of Quantum States. Found. Phys., 40(2):125–157, 2010. doi:https:/​/​​10.1007/​s10701-009-9347-0.

[81] Christopher A. Fuchs, N. David Mermin, and Rüdiger Schack. An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82(8):749–754, 08 2014. arXiv:https:/​/​​aapt/​ajp/​article-pdf/​82/​8/​749/​13089031/​749_1_online.pdf, doi:https:/​/​​10.1119/​1.4874855.

[82] Christopher A. Fuchs and Rüdiger Schack. Quantum-bayesian coherence. Rev. Mod. Phys., 85:1693–1715, Dec 2013. doi:https:/​/​​10.1103/​RevModPhys.85.1693.

[83] Lucien Hardy. Are quantum states real? Int. J. Mod. Phys. B, 27(01n03):1345012, 2013. doi:https:/​/​​10.1142/​S0217979213450124.

[84] M. S. Leifer and Robert W. Spekkens. Towards a formulation of quantum theory as a causally neutral theory of bayesian inference. Phys. Rev. A, 88:052130, Nov 2013. doi:https:/​/​​10.1103/​PhysRevA.88.052130.

[85] Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph. On the reality of the quantum state. Nat. Phys., 8(6):475–478, 2012. doi:https:/​/​​10.1038/​nphys2309.

[86] Matthew Leifer. Is the quantum state real? an extended review of psi-ontology theorems. Quanta, 3(1):67–155, 2014. URL: http:/​/​​ojs/​index.php/​quanta/​article/​view/​22, doi:10.12743/​quanta.v3i1.22.

[87] Robert Spekkens. Why i am not a psi-ontologist, may 2012. doi:https:/​/​​10.48660/​12050021.

[88] Timothy H Boyer. A brief survey of stochastic electrodynamics. In Foundations of Radiation Theory and Quantum Electrodynamics,, New York, 1980. E. O. Barut, Plenum Press. doi:https:/​/​​10.1007/​978-1-4757-0671-0_5.

[89] Trevor W Marshall. Random electrodynamics. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1367):475–491, 1963. doi:https:/​/​​10.1098/​rspa.1963.0220.

[90] T. W. Marshall. Statistical electrodynamics. Mathematical Proceedings of the Cambridge Philosophical Society, 61(2):537–546, 1965. doi:https:/​/​​10.1017/​S0305004100004114.

[91] Luis de la Pena and Ana Maria Cetto. The Quantum Dice: An Introduction to Stochastic Electrodynamics. Springer Dordrecht, 1996. doi:https:/​/​​10.1007/​978-94-015-8723-5.

[92] Jonte R Hance and Sabine Hossenfelder. Comment on” why interference phenomena do not capture the essence of quantum theory” by catani et al. arXiv preprint arXiv:2204.01768, 2022. doi:https:/​/​​10.48550/​arXiv.2204.01768.

[93] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):467–488, 1982. doi:https:/​/​​10.1007/​BF02650179.

[94] Andrew Whitaker. Richard Feynman and Bell’s theorem. American Journal of Physics, 84(7):493–494, 07 2016. arXiv:https:/​/​​aapt/​ajp/​article-pdf/​84/​7/​493/​13122201/​493_1_online.pdf, doi:https:/​/​​10.1119/​1.4948268.

[95] Anthony Hey. Feynman and computation. CRC Press, 2018. URL: https:/​/​​Feynman-And-Computation/​Hey/​p/​book/​9780813340395.

[96] E. P. Wigner. Remarks on the Mind-Body Question, pages 247–260. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. doi:https:/​/​​10.1007/​978-3-642-78374-6_20.

[97] Fritz London and Edmond Bauer. The theory of observation in quantum mechanics. In John Archibald Wheeler and Wojciech Hubert Zurek, editors, Quantum theory and measurement, volume 53. Princeton University Press, 2014. URL: https:/​/​​ dhoward1/​The%20Theory%20of%20Observation%20in%20Quantum%20Mechanics.pdf.

[98] G. C. Ghirardi, A. Rimini, and T. Weber. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D, 34:470–491, Jul 1986. doi:https:/​/​​10.1103/​PhysRevD.34.470.

[99] Philip Pearle. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A, 39:2277–2289, Mar 1989. doi:https:/​/​​10.1103/​PhysRevA.39.2277.

[100] Angelo Bassi, Kinjalk Lochan, Seema Satin, Tejinder P. Singh, and Hendrik Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85:471–527, Apr 2013. doi:https:/​/​​10.1103/​RevModPhys.85.471.

[101] Ward Struyve and Hans Westman. A minimalist pilot-wave model for quantum electrodynamics. Proc. Roy. Soc. A, 463(2088):3115–3129, 2007. doi:https:/​/​​10.1098/​rspa.2007.0144.

[102] Hugh Everett. “relative state” formulation of quantum mechanics. Rev. Mod. Phys., 29:454–462, Jul 1957. doi:https:/​/​​10.1103/​RevModPhys.29.454.

[103] David Wallace. The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press, 05 2012. doi:https:/​/​​10.1093/​acprof:oso/​9780199546961.001.0001.

[104] David Deutsch. The Fabric of Reality. Penguin UK, 1998.

[105] Michael J. W. Hall, Dirk-André Deckert, and Howard M. Wiseman. Quantum phenomena modeled by interactions between many classical worlds. Phys. Rev. X, 4:041013, Oct 2014. doi:https:/​/​​10.1103/​PhysRevX.4.041013.

[106] Bruno De Finetti. Theory of Probability: A critical introductory treatment. Wiley, 2017. doi:https:/​/​​10.1002/​9781119286387.

[107] Carlton M. Caves, Christopher A. Fuchs, and Rudiger Schack. Unknown quantum states: The quantum de Finetti representation. Journal of Mathematical Physics, 43(9):4537–4559, 08 2002. arXiv:https:/​/​​aip/​jmp/​article-pdf/​43/​9/​4537/​8171854/​4537_1_online.pdf, doi:https:/​/​​10.1063/​1.1494475.

[108] Robert W. Spekkens. The Paradigm of Kinematics and Dynamics Must Yield to Causal Structure, pages 5–16. Springer International Publishing, Cham, 2015. doi:https:/​/​​10.1007/​978-3-319-13045-3_2.

[109] Norman Margolus. Physics-Like Models of Computation, pages 83–104. Springer London, London, 2002. doi:https:/​/​​10.1007/​978-1-4471-0129-1_4.

Cited by

[1] Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, and Robert W. Spekkens, “What is Nonclassical about Uncertainty Relations?”, Physical Review Letters 129 24, 240401 (2022).

[2] Ram Krishna Patra, Sahil Gopalkrishna Naik, Edwin Peter Lobo, Samrat Sen, Tamal Guha, Some Sankar Bhattacharya, Mir Alimuddin, and Manik Banik, “Classical analogue of quantum superdense coding and communication advantage of a single quantum”, arXiv:2202.06796, (2022).

[3] Vinicius P. Rossi, David Schmid, John H. Selby, and Ana Belén Sainz, “Contextuality with vanishing coherence and maximal robustness to dephasing”, Physical Review A 108 3, 032213 (2023).

[4] Lorenzo Catani, Matthew Leifer, David Schmid, and Robert W. Spekkens, “Reply to “Comment on ‘Why interference phenomena do not capture the essence of quantum theory’ “”, arXiv:2207.11791, (2022).

[5] Tim Palmer, “Quantum Physics from Number Theory”, arXiv:2209.05549, (2022).

[6] Jonte R. Hance and Sabine Hossenfelder, “Comment on “Why interference phenomena do not capture the essence of quantum theory” by Catani et al”, arXiv:2204.01768, (2022).

[7] Victor Gitton and Mischa P. Woods, “On the system loophole of generalized noncontextuality”, arXiv:2209.04469, (2022).

[8] Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, and Robert W. Spekkens, “Aspects of the phenomenology of interference that are genuinely nonclassical”, Physical Review A 108 2, 022207 (2023).

[9] Markus P. Mueller and Andrew J. P. Garner, “Testing quantum theory with generalized noncontextuality”, arXiv:2112.09719, (2021).

[10] Rafael Wagner, Anita Camillini, and Ernesto F. Galvão, “Coherence and contextuality in a Mach-Zehnder interferometer”, arXiv:2210.05624, (2022).

[11] Brian Drummond, “Quantum Mechanics: Statistical Balance Prompts Caution in Assessing Conceptual Implications”, Entropy 24 11, 1537 (2022).

[12] David Schmid, John H. Selby, and Robert W. Spekkens, “Addressing some common objections to generalized noncontextuality”, arXiv:2302.07282, (2023).

[13] Lorenzo Catani and Matthew Leifer, “A mathematical framework for operational fine tunings”, Quantum 7, 948 (2023).

[14] David Schmid, “Macrorealism as strict classicality in the framework of generalized probabilistic theories (and how to falsify it)”, arXiv:2209.11783, (2022).

[15] Marcos L. W. Basso, Ismael L. Paiva, and Pedro R. Dieguez, “Unveiling quantum complementarity trade-offs in relativistic scenarios”, arXiv:2306.08136, (2023).

[16] Rafael Wagner and Ernesto F. Galvão, “Anomalous weak values require coherence”, arXiv:2303.08700, (2023).

[17] Lorenzo Catani, “Relationship between covariance of Wigner functions and transformation noncontextuality”, arXiv:2004.06318, (2020).

The above citations are from SAO/NASA ADS (last updated successfully 2023-09-25 14:19:37). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-09-25 14:19:35: Could not fetch cited-by data for 10.22331/q-2023-09-25-1119 from Crossref. This is normal if the DOI was registered recently.


Latest Intelligence


Chat with us

Hi there! How can I help you?