Generative Data Intelligence

Random unitaries, Robustness, and Complexity of Entanglement


J. Odavić, G. Torre, N. Mijić, D. Davidović, F. Franchini, and S. M. Giampaolo

Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


It is widely accepted that the dynamic of entanglement in presence of a generic circuit can be predicted by the knowledge of the statistical properties of the entanglement spectrum. We tested this assumption by applying a Metropolis-like entanglement cooling algorithm generated by different sets of local gates, on states sharing the same statistic. We employ the ground states of a unique model, namely the one-dimensional Ising chain with a transverse field, but belonging to different macroscopic phases such as the paramagnetic, the magnetically ordered, and the topological frustrated ones. Quite surprisingly, we observe that the entanglement dynamics are strongly dependent not just on the different sets of gates but also on the phase, indicating that different phases can possess different types of entanglement (which we characterize as purely local, GHZ-like, and W-state-like) with different degree of resilience against the cooling process. Our work highlights the fact that the knowledge of the entanglement spectrum alone is not sufficient to determine its dynamics, thereby demonstrating its incompleteness as a characterization tool. Moreover, it shows a subtle interplay between locality and non-local constraints.

The study explored entanglement dynamics in quantum systems subjected to different sets of local gates. While conventional wisdom suggests that you can predict entanglement dynamics based on the statistical properties of the entanglement spectrum, this research found that the behavior of entanglement not only depended on the set of gates but also on the system’s phase. Different phases exhibited distinct types of entanglement, and their response to entanglement cooling varied. This suggests that the entanglement spectrum alone cannot fully characterize entanglement dynamics and highlights a complex interplay between locality and non-local constraints in quantum systems.

► BibTeX data

► References

[1] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Physical Review 47, 777 (1935). 10.1103/​PhysRev.47.777.

[2] J. S. Bell, On the Einstein Podolsky Rosen Paradox, Physics Physique Fizika 1, 195 (1964). 10.1103/​PhysicsPhysiqueFizika.1.195.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press (2010). 10.1017/​CBO9780511976667.

[4] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature 464, 45 (2010). 10.1038/​nature08812.

[5] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum Sensing, Review of Modern Physics 89, 035002 (2017). 10.1103/​RevModPhys.89.035002.

[6] D. Gottesman, Theory of fault-tolerant quantum computation, Physical Review A 57, 127 (1998). 10.1103/​PhysRevA.57.127.

[7] S. Bravyi, G. Smith, and J. A. Smolin, Trading Classical and Quantum Computational Resources, Physical Review X 6, 021043 (2016). 10.1103/​PhysRevX.6.021043.

[8] L. Leone, S. F. E. Oliviero, Y. Zhou, and A. Hamma, Quantum chaos is quantum, Quantum 5, 453 (2021). 10.22331/​q-2021-05-04-453.

[9] D. Shaffer, C. Chamon, A. Hamma, and E. R. Mucciolo, Irreversibility and entanglement spectrum statistics in quantum circuits, Journal of Statistical Mechanics: Theory and Experiment 2014(12), P12007 (2014). 10.1088/​1742-5468/​2014/​12/​P12007.

[10] C. Chamon, A. Hamma, and E. R. Mucciolo, Emergent irreversibility and entanglement spectrum statistics, Physical Review Letters 112, 240501 (2014). 10.1103/​PhysRevLett.112.240501.

[11] Hinsche, M. et al. One $T$ Gate Makes Distribution Learning Hard. Physical Review Letters 130, 240602 (2023). 10.1103/​PhysRevLett.130.240602.

[12] S. Zhou, Z. Yang, A. Hamma, and C. Chamon, Single T gate in a Clifford circuit drives transition to universal entanglement spectrum statistics, SciPost Physics 9, 87 (2020). 10.21468/​SciPostPhys.9.6.087.

[13] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der Physik 48, 771 (2000). 10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E.
<a href=";2-E”>https:/​/​​10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E

[14] Z.-C. Yang, A. Hamma, S. M. Giampaolo, E. R. Mucciolo, and C. Chamon, Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Physical Review B 96, 020408 (2017). 10.1103/​PhysRevB.96.020408.

[15] True, S. and Hamma, A. Transitions in Entanglement Complexity in Random Circuits. Quantum 6, 818 (2022). 10.22331/​q-2022-09-22-818.

[16] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random Quantum Circuits, Annual Review of Condensed Matter Physics 14, 335 (2023). 10.1146/​annurev-conmatphys-031720-030658.

[17] Suzuki, R., Haferkamp, J., Eisert, J. and Faist, P. Quantum complexity phase transitions in monitored random circuits. Preprint at arXiv.2305.15475 (2023). 10.48550/​arXiv.2305.15475.

[18] Dalmonte, M., Eisler, V., Falconi, M. and Vermersch, B. Entanglement Hamiltonians: From Field Theory to Lattice Models and Experiments. Annalen der Physik 534, 2200064 (2022). 10.1002/​andp.202200064.

[19] D. Poilblanc, T, Ziman, and J. Bellissard, F. Mila, and G. Montambaux, Poisson vs GOE Statistics in Integrable and Non-Integrable Quantum Hamiltonians, Europhysics Letters 22, 537 (1993). 10.1209/​0295-5075/​22/​7/​010.

[20] J.-J. Dong, P. Li, and Q.-H. Chen, The a-cycle problem for transverse Ising ring, Journal of Statistical Mechanics: Theory and Experiment 113102 (2016). 10.1088/​1742-5468/​2016/​11/​113102.

[21] V. Marić, S. M. Giampaolo, and F. Franchini, Quantum Phase Transition induced by topological frustration, Communications Physics 3, 220 (2020). 10.1038/​s42005-020-00486-z.

[22] V. Marić, F. Franchini, D. Kuić, and S. M. Giampaolo, Resilience of the topological phases to frustration, Scientific Reports 11, 6508 (2021). 10.1038/​s41598-021-86009-4.

[23] G. Torre, V. Marić, F. Franchini, and S. M. Giampaolo, Effects of defects in the XY chain with frustrated boundary conditions, Physical Review B 103, 014429, (2021). 10.1103/​PhysRevB.103.014429.

[24] V. Marić, G. Torre, F. Franchini, and S. M. Giampaolo Topological Frustration can modify the nature of a Quantum Phase Transition, SciPost Physics 12, 075 (2022). 10.21468/​SciPostPhys.12.2.075.

[25] G. Torre, V. Marić, D. Kuić, F. Franchini, and S. M. Giampaolo, Odd thermodynamic limit for the Loschmidt echo, Physical Review B 105, 184424 (2022). 10.1103/​PhysRevB.105.184424.

[26] S. M. Giampaolo, F. B. Ramos, and F. Franchini, The frustration of being odd: universal area law violation in local systems, Journal of Physics Communications 3 081001 (2019). 10.1088/​2399-6528/​ab3ab3.

[27] V. Marić, S. M. Giampaolo, and F. Franchini, Fate of local order in topologically frustrated spin chains, Physical Review B 105, 064408 (2022). 10.1103/​PhysRevB.105.064408.

[28] A. G. Catalano, D. Brtan, F. Franchini, and S. M. Giampaolo, Simulating continuous symmetry models with discrete ones, Physical Review B 106, 125145 (2022). 10.1103/​PhysRevB.106.125145.

[29] V. Marić, S. M. Giampaolo, and F. Franchini, The Frustration of being Odd: How Boundary Conditions can destroy Local Order, New Journal of Physics 22, 083024 (2020). 10.1088/​1367-2630/​aba064.

[30] A. Hamma, S. M. Giampaolo, and F. Illuminati, Mutual information and spontaneous symmetry breaking, Physical Review A 93, 0123030 (2016). 10.1103/​PhysRevA.93.012303.

[31] F. Franchini, An introduction to integrable techniques for one-dimensional quantum systems, Lecture Notes in Physics 940, Springer (2017). 10.1007/​978-3-319-48487-7.

[32] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Reviews of Modern Physics 80, 517 (2008). 10.1103/​RevModPhys.80.517.

[33] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Physical Review Letters 80, 2245 (1998). 10.1103/​PhysRevLett.80.2245.

[34] F. Franchini, A. R. Its, V.E. Korepin, L.A. Takhtajan, Spectrum of the density matrix of a large block of spins of the XY model in one dimension, Quantum Information Processing 10, 325–341 (2011). 10.1007/​s11128-010-0197-7.

[35] A. W. Sandvick, Computational Studies of Quantum Spin Systems, AIP Conference Proceedings 1297, 135 (2010). 10.1063/​1.3518900.

[36] K. Binder, and D. W. Heermann, Monte Carlo Simulation in Statistical Physics An Introduction, Springer-Verlag Berlin Heidelberg (2010). 10.1007/​978-3-642-03163-2.

[37] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Physical Review A 52, 3457 (1995). 10.1103/​PhysRevA.52.3457.

[38] M Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, Journal of Mathematical Physics 54, 122203 (2013). 10.1063/​1.4838856.

[39] P. Horodecki and A. Ekert, Method for Direct Detection of Quantum Entanglement, Physical Review Letters 89, 127902 (2002). 10.1103/​PhysRevLett.89.127902.

[40] M. B. Plenio and S. Virmani, Quantum Information and Computation 7, 1 (2007). 10.26421/​QIC7.1-2-1.

[41] S. M. Giampaolo, S. Montangero, F. Dell’Anno, S. De Siena, and F. Illuminati, Universal aspects in the behavior of the entanglement spectrum in one dimension: Scaling transition at the factorization point and ordered entangled structures, Physical Review B 88, 125142 (2013). 10.1103/​PhysRevB.88.125142.

[42] N. Mijić and D. Davidović, Batched matrix operations on distributed GPUs with application in theoretical physics, 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 2022, pp. 293-299.10.23919/​MIPRO55190.2022.9803591.

[43] B. Lesche, Rényi entropies and observables, Physical Review E 70, 017102 (2004). 10.1103/​PhysRevE.70.017102.

[44] F. A. Bovino, G. Castagnoli, A. Ekert, P. Horodecki, C. Moura Alves and A. V. Sergienko, Direct Measurement of Nonlinear Properties of Bipartite Quantum States, Physical Review Letters 95, 240407 (2006). 10.1103/​PhysRevLett.95.240407.

[45] D. A. Abanin and E. Demler, Measuring Entanglement Entropy of a Generic Many-Body System with a Quantum Switch, Physical Review Letters 109, 020504 (2012). 10.1103/​PhysRevLett.109.020504.

[46] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M. Rispoli, and M. Greiner, Measuring entanglement entropy in a quantum many-body system, Nature 528, 77 (2015). 10.1038/​nature15750.

[47] A. M. Kaufman, M. Eric Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, Quantum thermalization through entanglement in an isolated many-body system, Science 353, 794 (2016). 10.1126/​science.aaf6725.

[48] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Probing Rényi entanglement entropy via randomized measurements, Science 364, 260 (2019). 10.1126/​science.aau4963.

[49] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in quantum channels, Journal of High Energy Physics 2016, 4 (2016). 10.1007/​JHEP02(2016)004.

[50] G. Evenbly, A Practical Guide to the Numerical Implementation of Tensor Networks I: Contractions, Decompositions and Gauge Freedom, Frontiers in Applied Mathematics and Statistics, 8 (2022). 10.3389/​fams.2022.806549.

[51] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going Beyond Bell’s Theorem, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Ed. M. Kafatos, Fundamental Theories of Physics 37, 69 Springer (1989). 10.1007/​978-94-017-0849-4_10.

[52] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Physical Review A 62, 062314 (2000). 10.1103/​PhysRevA.62.062314.

[53] V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Physical Review A 61, 052306 (2000). 10.1103/​PhysRevA.61.052306.

[54] M. B. Hastings, and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Physical Review B 72, 045141 (2005). 10.1103/​PhysRevB.72.045141.

[55] J. Odavić, T. Haug and G. Torre, A. Hamma, F. Franchini and S. M. Giampaolo, Complexity of frustration: a new source of non-local non-stabilizerness, arxiv:2209:10541 (2022). 10.48550/​arXiv.2209.10541.

[56] T. R. de Oliveira, G. Rigolin, and M. C. de Oliveira, Genuine Multipartite Entanglement in Quantum Phase Transitions, Physical Review A 73, 010305(R) (2006). 10.1103/​PhysRevA.73.010305.

[57] T. R. de Oliveira, G. Rigolin, M. C. de Oliveira, and E. Miranda, Multipartite Entanglement Signature of Quantum Phase Transitions, Phys. Rev. Lett. 97, 170401 (2006). 10.1103/​PhysRevLett.97.170401.

[58] A. Anfossi, P. Giorda, and A. Montorsi, Momentum-space analysis of multipartite entanglement at quantum phase transitions, Phys. Rev. B 78, 144519 (2008). 10.1103/​PhysRevB.78.144519.

[59] S. M. Giampaolo, and B. C. Hiesmayr, Genuine Multipartite Entanglement in the XY Model, Physical Review A 88, 052305 (2013). 10.1103/​PhysRevA.88.052305.

[60] S. M. Giampaolo, and B. C. Hiesmayr, Genuine Multipartite Entanglement in the Cluster-Ising Model, New Journal of Physics 16, 093033 (2014). 10.1088/​1367-2630/​16/​9/​093033.

[61] S. M. Giampaolo, and B. C. Hiesmayr, Topological and nematic ordered phases in many-body cluster-Ising models, Physical Review A 92, 012306 (2015). 10.1103/​PhysRevA.92.012306.

[62] M. Hofmann, A. Osterloh, and O. Gühne, Scaling of genuine multiparticle entanglement close to a quantum phase transition, Physical Review B 89, 134101 (2014). 10.1103/​PhysRevB.89.134101.

[63] D. Girolami, T. Tufarelli, and C. E. Susa, Quantifying genuine multipartite correlations and their pattern complexity, Physical Review Letters 119, 140505 (2017). 10.1103/​PhysRevLett.119.140505.

[64] M. Gabbrielli, A. Smerzi, and L. Pezzé, Multipartite Entanglement at Finite Temperature, Scientific Reports 8, 15663 (2018). 10.1038/​s41598-018-31761-3.

[65] S. Haldar, S. Roy, T. Chanda, A. Sen De, and U. Sen, Multipartite entanglement at dynamical quantum phase transitions with non-uniformly spaced criticalities, Physical Review B 101, 224304 (2020). 10.1103/​PhysRevB.101.224304.

[66] I. Peschel and V. J. Emery, Calculation of spin correlations in two-dimensional Ising systems from one-dimensional kinetic models, Zeitschrift für Physik B Condensed Matter 43, 241 (1981). 10.1007/​BF01297524.

[67] W. Selke, The ANNNI model – Theoretical analysis and experimental application, Physics Reports 170, 213 (1988). 10.1016/​0370-1573(88)90140-8.

[68] A. K. Chandra and S. Dasgupta, Floating phase in the one-dimensional transverse axial next-nearest-neighbor Ising model, Physical Review E 75, 021105 (2007). 10.1103/​PhysRevE.75.021105.

[69] D. Allen, P. Azaria and P. Lecheminant, A two-leg quantum Ising ladder: A bosonization study of the ANNNI model, Journal of Physics A: Mathematical and General L305 (2001). 10.1088/​0305-4470/​34/​21/​101.

[70] P. R. C. Guimaraes, J. A. Plascak, F. C. Sa Barreto, and J. Florencio, Quantum phase transitions in the one-dimensional transverse Ising model with second-neighbor interactions, Physical Review B 66, 064413 (2002). 10.1103/​PhysRevB.66.064413.

[71] M. Beccaria, M. Campostrini and A. Feo, Evidence for a floating phase of the transverse ANNNI model at high frustration, Physical Review B 76, 094410 (2007). 10.1103/​PhysRevB.76.094410.

[72] S. Suzuki, J.-i. Inoue and B. K. Chakrabarti, Quantum Ising phases and transitions in transverse Ising models, Springer, Berlin, Heidelberg, Germany, ISBN 9783642330384 (2013). 10.1007/​978-3-642-33039-1.

[73] V. Oganesyan, and D. A. Huse, Localization of interacting fermions at high temperature, Physical Review B 75, 155111 (2007). 10.1103/​PhysRevB.75.155111.

[74] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles, Physical Review Letters 110, 084101 (2013). 10.1103/​PhysRevLett.110.084101.

[75] J. Odavić, and P. Mali, Random matrix ensembles in hyperchaotic classical dissipative dynamic systems, Journal of Statistical Mechanics: Theory and Experiment 2021, 043204 (2021). 10.1088/​1742-5468/​abed46.

[76] Barouch, E. and McCoy, B. M. Statistical Mechanics of the $XY$ Model. II. Spin-Correlation Functions. Physical Review A 3, 786–804 (1971). 10.1103/​PhysRevA.3.786.

[77] Vidal, G., Latorre, J. I., Rico, E. and Kitaev, A. Entanglement in Quantum Critical Phenomena. Phys. Rev. Lett. 90, 227902 (2003). 10.1103/​PhysRevLett.90.227902.

[78] mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). http:/​/​​.

[79] https:/​/​​record/​7252232.

[80] https:/​/​​HybridScale/​Entanglement-Cooling-Algorithm.

Cited by

Could not fetch Crossref cited-by data during last attempt 2023-09-15 11:21:59: Could not fetch cited-by data for 10.22331/q-2023-09-15-1115 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2023-09-15 11:22:00).


Latest Intelligence


Chat with us

Hi there! How can I help you?