Generative Data Intelligence

Finite-time Landauer principle beyond weak coupling

Date:

Alberto Rolandi and Martí Perarnau-Llobet

Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Landauer’s principle gives a fundamental limit to the thermodynamic cost of erasing information. Its saturation requires a reversible isothermal process, and hence infinite time. We develop a finite-time version of Landauer’s principle for a bit encoded in the occupation of a single fermionic mode, which can be strongly coupled to a reservoir. By solving the exact non-equilibrium dynamics, we optimize erasure processes (taking both the fermion’s energy and system-bath coupling as control parameters) in the slow driving regime through a geometric approach to thermodynamics. We find analytic expressions for the thermodynamic metric and geodesic equations, which can be solved numerically. Their solution yields optimal processes that allow us to characterize a finite-time correction to Landauer’s bound, fully taking into account non-markovian and strong coupling effects.

Landauer’s principle gives a fundamental limit to the thermodynamic cost of erasing information. However, reaching this limit requires an infinite amount of time. In this work, we combine finite-time quantum thermodynamics and geometric thermodynamics to investigate finite-time corrections to Landauer’s principle. Previous works derive general bounds that are obtained from the weakly-coupled Markovian regime, but the strong coupling regime remained unexplored so far. Our work investigates this regime and shows that strong coupling is needed for optimal finite-time erasure. Furthermore, our results suggest the appearance of the Planckian dissipation time as the shortest timescale for information erasure.

► BibTeX data

► References

[1] R. Landauer, IBM Journal of Research and Development 5, 183 (1961).
https:/​/​doi.org/​10.1147/​rd.53.0183

[2] T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.250602

[3] M. Esposito and C. V. den Broeck, EPL (Europhysics Letters) 95, 40004 (2011).
https:/​/​doi.org/​10.1209/​0295-5075/​95/​40004

[4] S. Hilt, S. Shabbir, J. Anders, and E. Lutz, Phys. Rev. E 83, 030102 (2011).
https:/​/​doi.org/​10.1103/​PhysRevE.83.030102

[5] S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).
https:/​/​doi.org/​10.1103/​PhysRevX.3.041003

[6] D. Reeb and M. M. Wolf, New Journal of Physics 16, 103011 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​10/​103011

[7] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner, Nature Communications 6 (2015), 10.1038/​ncomms8669.
https:/​/​doi.org/​10.1038/​ncomms8669

[8] S. Lorenzo, R. McCloskey, F. Ciccarello, M. Paternostro, and G. M. Palma, Phys. Rev. Lett. 115, 120403 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.120403

[9] J. Goold, M. Paternostro, and K. Modi, Phys. Rev. Lett. 114, 060602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.060602

[10] A. M. Alhambra, L. Masanes, J. Oppenheim, and C. Perry, Phys. Rev. X 6, 041017 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.041017

[11] G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, New Journal of Physics 19, 103038 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa8cf1

[12] H. J. Miller, G. Guarnieri, M. T. Mitchison, and J. Goold, Physical Review Letters 125 (2020), 10.1103/​physrevlett.125.160602.
https:/​/​doi.org/​10.1103/​physrevlett.125.160602

[13] A. M. Timpanaro, J. P. Santos, and G. T. Landi, Phys. Rev. Lett. 124, 240601 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.240601

[14] P. M. Riechers and M. Gu, Phys. Rev. A 104, 012214 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.104.012214

[15] L. Buffoni and M. Campisi, Journal of Statistical Physics 186 (2022), 10.1007/​s10955-022-02877-8.
https:/​/​doi.org/​10.1007/​s10955-022-02877-8

[16] P. Taranto, F. Bakhshinezhad, A. Bluhm, R. Silva, N. Friis, M. P. Lock, G. Vitagliano, F. C. Binder, T. Debarba, E. Schwarzhans, F. Clivaz, and M. Huber, PRX Quantum 4, 010332 (2023).
https:/​/​doi.org/​10.1103/​PRXQuantum.4.010332

[17] C. Browne, A. J. P. Garner, O. C. O. Dahlsten, and V. Vedral, Phys. Rev. Lett. 113, 100603 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.100603

[18] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, Nature 483, 187 (2012).
https:/​/​doi.org/​10.1088/​1742-5468/​2015/​06/​P06015

[19] Y. Jun, M. Gavrilov, and J. Bechhoefer, Phys. Rev. Lett. 113, 190601 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.190601

[20] A. Bérut, A. Petrosyan, and S. Ciliberto, J. Stat. Mech. 2015, P06015 (2015).
https:/​/​doi.org/​10.1088/​1742-5468/​2015/​06/​p06015

[21] M. Gavrilov and J. Bechhoefer, Phys. Rev. Lett. 117, 200601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.200601

[22] J. Hong, B. Lambson, S. Dhuey, and J. Bokor, Sci. Adv. 2 (2016), 10.1126/​sciadv.1501492.
https:/​/​doi.org/​10.1126/​sciadv.1501492

[23] L. Martini, M. Pancaldi, M. Madami, P. Vavassori, G. Gubbiotti, S. Tacchi, F. Hartmann, M. Emmerling, S. Höfling, L. Worschech, and G. Carlotti, Nano Energy 19, 108 (2016).
https:/​/​doi.org/​10.1016/​j.nanoen.2015.10.028

[24] R. Gaudenzi, E. Burzurí, S. Maegawa, H. S. J. van der Zant, and F. Luis, Nat. Phys. 14, 565 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0070-7

[25] O. Saira, M. H. Matheny, R. Katti, W. Fon, G. Wimsatt, J. P. Crutchfield, S. Han, and M. L. Roukes, Phys. Rev. Res. 2, 013249 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013249

[26] S. Dago, J. Pereda, N. Barros, S. Ciliberto, and L. Bellon, Phys. Rev. Lett. 126, 170601 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.170601

[27] S. Dago and L. Bellon, Phys. Rev. Lett. 128, 070604 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.070604

[28] M. A. Ciampini, T. Wenzl, M. Konopik, G. Thalhammer, M. Aspelmeyer, E. Lutz, and N. Kiesel, arXiv:2107.04429 (2021).
https:/​/​doi.org/​10.48550/​arXiv.2107.04429
arXiv:2107.04429

[29] M. Scandi, D. Barker, S. Lehmann, K. A. Dick, V. F. Maisi, and M. Perarnau-Llobet, Phys. Rev. Lett. 129, 270601 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.129.270601

[30] Nernst, W. Sitzber. Kgl. Preuss. Akad. Wiss. Physik-Math. Kl. 134 (1912), missing.

[31] L. Masanes and J. Oppenheim, Nature Communications 8 (2017), 10.1038/​ncomms14538.
https:/​/​doi.org/​10.1038/​ncomms14538

[32] N. Freitas, R. Gallego, L. Masanes, and J. P. Paz, in Fundamental Theories of Physics (Springer International Publishing, 2018) pp. 597–622.
https:/​/​doi.org/​10.1007/​978-3-319-99046-0_25

[33] E. Aurell, C. Mejía-Monasterio, and P. Muratore-Ginanneschi, Phys. Rev. Lett. 106, 250601 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.106.250601

[34] E. Aurell, K. Gawȩdzki, C. Mejía-Monasterio, R. Mohayaee, and P. Muratore-Ginanneschi, Journal of Statistical Physics 147, 487 (2012).
https:/​/​doi.org/​10.1007/​s10955-012-0478-x

[35] T. Van Vu and K. Saito, Phys. Rev. X 13, 011013 (2023).
https:/​/​doi.org/​10.1103/​PhysRevX.13.011013

[36] P. Salamon, B. Andresen, P. D. Gait, and R. S. Berry, J. Chem. Phys. 73, 1001 (1980).
https:/​/​doi.org/​10.1063/​1.440217

[37] P. Salamon and R. S. Berry, Phys. Rev. Lett. 51, 1127 (1983).
https:/​/​doi.org/​10.1103/​PhysRevLett.51.1127

[38] J. Nulton, P. Salamon, B. Andresen, and A. Qi, J. Chem. Phys. 83, 334 (1985).
https:/​/​doi.org/​10.1063/​1.449774

[39] B. Andresen, R. S. Berry, R. Gilmore, E. Ihrig, and P. Salamon, Phys. Rev. A 37, 845 (1988).
https:/​/​doi.org/​10.1103/​PhysRevA.37.845

[40] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.190602

[41] S. Deffner and M. V. S. Bonança, EPL (Europhysics Letters) 131, 20001 (2020).
https:/​/​doi.org/​10.1209/​0295-5075/​131/​20001

[42] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and M. Scandi, Entropy 22, 1076 (2020).
https:/​/​doi.org/​10.3390/​e22101076

[43] T. V. Vu and Y. Hasegawa, Physical Review Letters 126 (2021), 10.1103/​physrevlett.126.010601.
https:/​/​doi.org/​10.1103/​physrevlett.126.010601

[44] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89, 052140 (2014).
https:/​/​doi.org/​10.1103/​PhysRevE.89.052140

[45] K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. Lett. 125, 100602 (2020a).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.100602

[46] K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. E 102, 032105 (2020b).
https:/​/​doi.org/​10.1103/​PhysRevE.102.032105

[47] A. B. Boyd, A. Patra, C. Jarzynski, and J. P. Crutchfield, Journal of Statistical Physics 187, 1 (2022).
https:/​/​doi.org/​10.1007/​s10955-022-02871-0

[48] J. S. Lee, S. Lee, H. Kwon, and H. Park, Phys. Rev. Lett. 129, 120603 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.129.120603

[49] G. Diana, G. B. Bagci, and M. Esposito, Phys. Rev. E 87, 012111 (2013).
https:/​/​doi.org/​10.1103/​PhysRevE.87.012111

[50] M. Scandi and M. Perarnau-Llobet, Quantum 3, 197 (2019).
https:/​/​doi.org/​10.22331/​q-2019-10-24-197

[51] Y.-Z. Zhen, D. Egloff, K. Modi, and O. Dahlsten, Phys. Rev. Lett. 127, 190602 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.190602

[52] T. Van Vu and K. Saito, Phys. Rev. Lett. 128, 010602 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.010602

[53] Y.-Z. Zhen, D. Egloff, K. Modi, and O. Dahlsten, Phys. Rev. E 105, 044147 (2022).
https:/​/​doi.org/​10.1103/​PhysRevE.105.044147

[54] Y.-H. Ma, J.-F. Chen, C. P. Sun, and H. Dong, Phys. Rev. E 106, 034112 (2022).
https:/​/​doi.org/​10.1103/​PhysRevE.106.034112

[55] P. Strasberg, G. Schaller, N. Lambert, and T. Brandes, New Journal of Physics 18, 073007 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​7/​073007

[56] C. Jarzynski, Phys. Rev. X 7, 011008 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.011008

[57] H. J. D. Miller, in Fundamental Theories of Physics (Springer International Publishing, 2018) pp. 531–549.
https:/​/​doi.org/​10.1007/​978-3-319-99046-0_22

[58] A. Nazir and G. Schaller, in Fundamental Theories of Physics (Springer International Publishing, 2018) pp. 551–577.
https:/​/​doi.org/​10.1007/​978-3-319-99046-0_23

[59] P. Talkner and P. Hänggi, Rev. Mod. Phys. 92, 041002 (2020).
https:/​/​doi.org/​10.1103/​RevModPhys.92.041002

[60] A. Rivas, Phys. Rev. Lett. 124, 160601 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.160601

[61] M. Brenes, J. J. Mendoza-Arenas, A. Purkayastha, M. T. Mitchison, S. R. Clark, and J. Goold, Phys. Rev. X 10, 031040 (2020).
https:/​/​doi.org/​10.1103/​PhysRevX.10.031040

[62] N. Pancotti, M. Scandi, M. T. Mitchison, and M. Perarnau-Llobet, Phys. Rev. X 10, 031015 (2020).
https:/​/​doi.org/​10.1103/​PhysRevX.10.031015

[63] S. Alipour, A. Chenu, A. T. Rezakhani, and A. del Campo, Quantum 4, 336 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-28-336

[64] K. Ptaszyński, Physical Review E 106 (2022), 10.1103/​physreve.106.014114.
https:/​/​doi.org/​10.1103/​physreve.106.014114

[65] M. Carrega, L. M. Cangemi, G. De Filippis, V. Cataudella, G. Benenti, and M. Sassetti, PRX Quantum 3, 010323 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010323

[66] F. Cavaliere, M. Carrega, G. D. Filippis, V. Cataudella, G. Benenti, and M. Sassetti, Physical Review Research 4 (2022), 10.1103/​physrevresearch.4.033233.
https:/​/​doi.org/​10.1103/​physrevresearch.4.033233

[67] F. Ivander, N. Anto-Sztrikacs, and D. Segal, Phys. Rev. E 105, 034112 (2022).
https:/​/​doi.org/​10.1103/​PhysRevE.105.034112

[68] D. Newman, F. Mintert, and A. Nazir, Phys. Rev. E 95, 032139 (2017).
https:/​/​doi.org/​10.1103/​PhysRevE.95.032139

[69] M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert, Physical Review Letters 120 (2018), 10.1103/​physrevlett.120.120602.
https:/​/​doi.org/​10.1103/​physrevlett.120.120602

[70] P. Strasberg, G. Schaller, T. L. Schmidt, and M. Esposito, Physical Review B 97 (2018), 10.1103/​physrevb.97.205405.
https:/​/​doi.org/​10.1103/​physrevb.97.205405

[71] M. Wiedmann, J. T. Stockburger, and J. Ankerhold, New Journal of Physics 22, 033007 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​ab725a

[72] J. Liu, K. A. Jung, and D. Segal, Phys. Rev. Lett. 127, 200602 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.200602

[73] Y. Shirai, K. Hashimoto, R. Tezuka, C. Uchiyama, and N. Hatano, Phys. Rev. Research 3, 023078 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023078

[74] S. Koyanagi and Y. Tanimura, The Journal of Chemical Physics 157, 084110 (2022).
https:/​/​doi.org/​10.1063/​5.0107305

[75] J. Liu and K. A. Jung, Phys. Rev. E 106, L022105 (2022).
https:/​/​doi.org/​10.1103/​PhysRevE.106.L022105

[76] G. Schaller, Open quantum systems far from equilibrium, Vol. 881 (Springer, 2014).
https:/​/​doi.org/​10.1007/​978-3-319-03877-3

[77] M. F. Ludovico, J. S. Lim, M. Moskalets, L. Arrachea, and D. Sánchez, Phys. Rev. B 89, 161306 (2014).
https:/​/​doi.org/​10.1103/​PhysRevB.89.161306

[78] M. Esposito, M. A. Ochoa, and M. Galperin, Phys. Rev. Lett. 114, 080602 (2015a).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.080602

[79] M. Esposito, M. A. Ochoa, and M. Galperin, Phys. Rev. B 92, 235440 (2015b).
https:/​/​doi.org/​10.1103/​PhysRevB.92.235440

[80] A. Bruch, M. Thomas, S. Viola Kusminskiy, F. von Oppen, and A. Nitzan, Phys. Rev. B 93, 115318 (2016).
https:/​/​doi.org/​10.1103/​PhysRevB.93.115318

[81] P. Haughian, M. Esposito, and T. L. Schmidt, Phys. Rev. B 97, 085435 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.085435

[82] M. T. Mitchison and M. B. Plenio, New Journal of Physics 20, 033005 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aa9f70

[83] K. Tong and W. Dou, Journal of Physics: Condensed Matter 34, 495703 (2022).
https:/​/​doi.org/​10.1088/​1361-648x/​ac99c8

[84] S. A. Hartnoll and A. P. Mackenzie, Rev. Mod. Phys. 94, 041002 (2022).
https:/​/​doi.org/​10.1103/​RevModPhys.94.041002

[85] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
https:/​/​doi.org/​10.1017/​CBO9780511973765

[86] J. Maldacena, S. H. Shenker, and D. Stanford, Journal of High Energy Physics 2016 (2016), 10.1007/​jhep08(2016)106.
https:/​/​doi.org/​10.1007/​jhep08(2016)106

[87] S. Pappalardi and J. Kurchan, SciPost Phys. 13, 006 (2022).
https:/​/​doi.org/​10.21468/​SciPostPhys.13.1.006

[88] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R. DeWeese, Phys. Rev. E 86, 041148 (2012).
https:/​/​doi.org/​10.1103/​PhysRevE.86.041148

[89] M. V. S. Bonança and S. Deffner, J. Chem. Phys. 140, 244119 (2014).
https:/​/​doi.org/​10.1063/​1.4885277

[90] G. M. Rotskoff, G. E. Crooks, and E. Vanden-Eijnden, Phys. Rev. E 95, 012148 (2017).
https:/​/​doi.org/​10.1103/​PhysRevE.95.012148

[91] G. Li, J.-F. Chen, C. P. Sun, and H. Dong, Phys. Rev. Lett. 128, 230603 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.230603

[92] J. Eglinton and K. Brandner, Phys. Rev. E 105, L052102 (2022).
https:/​/​doi.org/​10.1103/​PhysRevE.105.L052102

[93] A. G. Frim and M. R. DeWeese, Phys. Rev. Lett. 128, 230601 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.230601

[94] J.-F. Chen, R.-X. Zhai, C. Sun, and H. Dong, arXiv preprint arXiv:2209.07269 (2022), 10.48550/​arXiv.2209.07269.
https:/​/​doi.org/​10.48550/​arXiv.2209.07269
arXiv:2209.07269

[95] H. J. D. Miller, M. Scandi, J. Anders, and M. Perarnau-Llobet, Phys. Rev. Lett. 123, 230603 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.230603

[96] P. Abiuso and M. Perarnau-Llobet, Phys. Rev. Lett. 124, 110606 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110606

[97] K. Brandner and K. Saito, Phys. Rev. Lett. 124, 040602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.040602

[98] P. Terrén Alonso, P. Abiuso, M. Perarnau-Llobet, and L. Arrachea, PRX Quantum 3, 010326 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010326

[99] M. Mehboudi and H. J. D. Miller, Phys. Rev. A 105, 062434 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.062434

[100] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.170402

[101] J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics 11, 124 (2015).
https:/​/​doi.org/​10.1038/​nphys3215

[102] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Advances in Physics 65, 239 (2016).
https:/​/​doi.org/​10.1080/​00018732.2016.1198134

[103] Y. Subaşı, C. H. Fleming, J. M. Taylor, and B. L. Hu, Physical Review E 86 (2012), 10.1103/​physreve.86.061132.
https:/​/​doi.org/​10.1103/​physreve.86.061132

[104] M. Merkli, Annals of Physics 412, 167996 (2020).
https:/​/​doi.org/​10.1016/​j.aop.2019.167996

[105] J. D. Cresser and J. Anders, Phys. Rev. Lett. 127, 250601 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.250601

[106] A. S. Trushechkin, M. Merkli, J. D. Cresser, and J. Anders, AVS Quantum Science 4, 012301 (2022).
https:/​/​doi.org/​10.1116/​5.0073853

[107] V. Cavina, A. Mari, and V. Giovannetti, Phys. Rev. Lett. 119, 050601 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.050601

[108] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.108301

[109] M. Esposito, R. Kawai, K. Lindenberg, and C. Van Den Broeck, EPL 89, 20003 (2010).
https:/​/​doi.org/​10.1209/​0295-5075/​89/​20003

[110] S. Rochette, M. Rudolph, A.-M. Roy, M. J. Curry, G. A. T. Eyck, R. P. Manginell, J. R. Wendt, T. Pluym, S. M. Carr, D. R. Ward, M. P. Lilly, M. S. Carroll, and M. Pioro-Ladrière, Applied Physics Letters 114, 083101 (2019).
https:/​/​doi.org/​10.1063/​1.5091111

[111] F. Evers, R. Korytár, S. Tewari, and J. M. van Ruitenbeek, Rev. Mod. Phys. 92, 035001 (2020).
https:/​/​doi.org/​10.1103/​RevModPhys.92.035001

[112] F. Covito, F. G. Eich, R. Tuovinen, M. A. Sentef, and A. Rubio, Journal of Chemical Theory and Computation 14, 2495 (2018).
https:/​/​doi.org/​10.1021/​acs.jctc.8b00077

[113] L. W. Tu, Differential Geometry (Springer International Publishing, 2017).
https:/​/​doi.org/​10.1007/​978-3-319-55084-8

[114] L. Fox and D. F. Mayers, Numerical Solution of Ordinary Differential Equations (Springer Netherlands, 1987).
https:/​/​doi.org/​10.1007/​978-94-009-3129-9

[115] A. Soriani, E. Miranda, and M. V. S. Bonança, New Journal of Physics 24, 113037 (2022).
https:/​/​doi.org/​10.1088/​1367-2630/​aca177

[116] M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61, R16315 (2000).
https:/​/​doi.org/​10.1103/​PhysRevB.61.R16315

[117] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308 (2003).
https:/​/​doi.org/​10.1103/​PhysRevB.67.161308

[118] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Proceedings of the National Academy of Sciences 111, 13786 (2014a).
https:/​/​doi.org/​10.1073/​pnas.1406966111

[119] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola, Phys. Rev. Lett. 113, 030601 (2014b).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.030601

[120] S. Ismail-Beigi, Yale notes (2013).
https:/​/​volga.eng.yale.edu/​sites/​default/​files/​files/​general-lorentzian-integrals.pdf

[121] P. A. Erdman, A. Rolandi, P. Abiuso, M. Perarnau-Llobet, and F. Noé, Phys. Rev. Res. 5, L022017 (2023).
https:/​/​doi.org/​10.1103/​PhysRevResearch.5.L022017

Cited by

[1] Alberto Rolandi, Paolo Abiuso, and Martí Perarnau-Llobet, “Collective advantages in finite-time thermodynamics”, arXiv:2306.16534, (2023).

[2] Hong-Bo Huang, Geng Li, and Hui Dong, “Qubit Reset with a Shortcut-to-Isothermal Scheme”, arXiv:2310.18997, (2023).

[3] Sayan Mondal, Aparajita Bhattacharyya, Ahana Ghoshal, and Ujjwal Sen, “Modified Landauer’s principle: How much can the Maxwell’s demon gain by using general system-environment quantum state?”, arXiv:2309.09678, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-11-04 01:03:05). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2023-11-04 01:03:04).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?