Generative Data Intelligence

20-Mode Universal Quantum Photonic Processor

Date:

Caterina Taballione1, Malaquias Correa Anguita2, Michiel de Goede1, Pim Venderbosch1, Ben Kassenberg1, Henk Snijders1, Narasimhan Kannan1, Ward L. Vleeshouwers1,3, Devin Smith1, Jörn P. Epping1, Reinier van der Meer2, Pepijn W. H. Pinkse2, Hans van den Vlekkert1, and Jelmer J. Renema1,2

1QuiX Quantum B.V., 7521 AN Enschede, The Netherlands
2MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
3QuSoft, 1098 XG Amsterdam, The Netherlands

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Integrated photonics is an essential technology for optical quantum computing. Universal, phase-stable, reconfigurable multimode interferometers (quantum photonic processors) enable manipulation of photonic quantum states and are one of the main components of photonic quantum computers in various architectures. In this paper, we report the realization of the largest quantum photonic processor to date. The processor enables arbitrary unitary transformations on its 20 input modes with an amplitude fidelity of $F_{text{Haar}} = 97.4%$ and $F_{text{Perm}} = 99.5%$ for Haar-random and permutation matrices, respectively, an optical loss of 2.9 dB averaged over all modes, and high-visibility quantum interference with $V_{text{HOM}}=98%$. The processor is realized in $mathrm{Si_3N_4}$ waveguides and is actively cooled by a Peltier element.

â–º BibTeX data

â–º References

[1] Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao Su, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Jelmer J. Renema, Chao-Yang Lu, and Jian-Wei Pan. “Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light”. Phys. Rev. Lett. 127, 180502 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.180502

[2] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. “Quantum computational advantage using photons”. Science 370, 1460–1463 (2020).
https:/​/​doi.org/​10.1126/​science.abe8770

[3] H. J. Kimble. “The quantum internet”. Nature 453, 1023–1030 (2008).
https:/​/​doi.org/​10.1038/​nature07127

[4] Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. “Quantum Internet: From Communication to Distributed Computing!”. In Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication. NANOCOM ’18New York, NY, USA (2018). Association for Computing Machinery.
https:/​/​doi.org/​10.1145/​3233188.3233224

[5] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi. “Quantum Internet: Networking Challenges in Distributed Quantum Computing”. IEEE Network 34, 137–143 (2020).
https:/​/​doi.org/​10.1109/​MNET.001.1900092

[6] Jessica Illiano, Marcello Caleffi, Antonio Manzalini, and Angela Sara Cacciapuoti. “Quantum Internet Protocol Stack: a Comprehensive Survey” (2022).
https:/​/​doi.org/​10.1016/​j.comnet.2022.109092

[7] Scott Aaronson and Alex Arkhipov. “The Computational Complexity of Linear Optics”. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing. Pages 333–342. STOC ’11New York, NY, USA (2011). Association for Computing Machinery.
https:/​/​doi.org/​10.1145/​1993636.1993682

[8] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. “Linear optical quantum computing with photonic qubits”. Reviews of Modern Physics 79, 135–174 (2007).
https:/​/​doi.org/​10.1103/​RevModPhys.79.135

[9] S. Takeda and A. Furusawa. “Toward large-scale fault-tolerant universal photonic quantum computing”. APL Photonics 4, 060902 (2019).
https:/​/​doi.org/​10.1063/​1.5100160

[10] Ulrik L. Andersen, Jonas S. Neergaard-Nielsen, Peter van Loock, and Akira Furusawa. “Hybrid discrete- and continuous-variable quantum information”. Nature Physics 11, 713–719 (2015).
https:/​/​doi.org/​10.1038/​nphys3410

[11] Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen. “Deterministic multi-mode gates on a scalable photonic quantum computing platform”. Nature Physics 17, 1018–1023 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01296-y

[12] Sergei Slussarenko and Geoff J. Pryde. “Photonic quantum information processing: A concise review”. Applied Physics Reviews 6, 041303 (2019).
https:/​/​doi.org/​10.1063/​1.5115814

[13] Fulvio Flamini, Nicolò Spagnolo, and Fabio Sciarrino. “Photonic quantum information processing: a review”. Reports on Progress in Physics 82, 016001 (2018).
https:/​/​doi.org/​10.1088/​1361-6633/​aad5b2

[14] Chris Sparrow, Enrique Martín-López, Nicola Maraviglia, Alex Neville, Christopher Harrold, Jacques Carolan, Yogesh N. Joglekar, Toshikazu Hashimoto, Nobuyuki Matsuda, Jeremy L. O’Brien, David P. Tew, and Anthony Laing. “Simulating the vibrational quantum dynamics of molecules using photonics”. Nature 557, 660–667 (2018).
https:/​/​doi.org/​10.1038/​s41586-018-0152-9

[15] Leonardo Banchi, Mark Fingerhuth, Tomas Babej, Christopher Ing, and Juan Miguel Arrazola. “Molecular docking with Gaussian Boson Sampling”. Science Advances 6, eaax1950 (2020).
https:/​/​doi.org/​10.1126/​sciadv.aax1950

[16] Thomas R Bromley, Juan Miguel Arrazola, Soran Jahangiri, Josh Izaac, Nicolás Quesada, Alain Delgado Gran, Maria Schuld, Jeremy Swinarton, Zeid Zabaneh, and Nathan Killoran. “Applications of near-term photonic quantum computers: software and algorithms”. Quantum Science and Technology 5, 034010 (2020).
https:/​/​doi.org/​10.1088/​2058-9565/​ab8504

[17] C. K. Hong, Z. Y. Ou, and L. Mandel. “Measurement of subpicosecond time intervals between two photons by interference”. Phys. Rev. Lett. 59, 2044–2046 (1987).
https:/​/​doi.org/​10.1103/​PhysRevLett.59.2044

[18] Jianwei Wang, Fabio Sciarrino, Anthony Laing, and Mark G. Thompson. “Integrated photonic quantum technologies”. Nature Photonics 14, 273–284 (2020).
https:/​/​doi.org/​10.1038/​s41566-019-0532-1

[19] Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J. Russell, Joshua W. Silverstone, Peter J. Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, Graham D. Marshall, Mark G. Thompson, Jonathan C. F. Matthews, Toshikazu Hashimoto, Jeremy L. O’Brien, and Anthony Laing. “Universal linear optics”. Science 349, 711 (2015).
https:/​/​doi.org/​10.1126/​science.aab3642

[20] Nicholas C. Harris, Gregory R. Steinbrecher, Mihika Prabhu, Yoav Lahini, Jacob Mower, Darius Bunandar, Changchen Chen, Franco N. C. Wong, Tom Baehr-Jones, Michael berg, Seth Lloyd, and Dirk Englund. “Quantum transport simulations in a programmable nanophotonic processor”. Nature Photonics 11, 447–452 (2017).
https:/​/​doi.org/​10.1038/​nphoton.2017.95

[21] Caterina Taballione, Tom A. W. Wolterink, Jasleen Lugani, Andreas Eckstein, Bryn A. Bell, Robert Grootjans, Ilka Visscher, Dimitri Geskus, Chris G. H. Roeloffzen, Jelmer J. Renema, Ian A. Walmsley, Pepijn W. H. Pinkse, and Klaus-J. Boller. “8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides”. Optics Express 27, 26842–26857 (2019).
https:/​/​doi.org/​10.1364/​OE.27.026842

[22] Caterina Taballione, Reinier van der Meer, Henk J. Snijders, Peter Hooijschuur, Jörn P. Epping, Michiel de Goede, Ben Kassenberg, Pim Venderbosch, Chris Toebes, Hans van den Vlekkert, Pepijn W. H. Pinkse, and Jelmer J. Renema. “A universal fully reconfigurable 12-mode quantum photonic processor”. Materials for Quantum Technology 1, 035002 (2021).
https:/​/​doi.org/​10.1088/​2633-4356/​ac168c

[23] Gregory R. Steinbrecher, Jonathan P. Olson, Dirk Englund, and Jacques Carolan. “Quantum optical neural networks”. npj Quantum Information 5, 60 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0174-7

[24] Jonathan CF Matthews, Xiao-Qi Zhou, Hugo Cable, Peter J Shadbolt, Dylan J Saunders, Gabriel A Durkin, Geoff J Pryde, and Jeremy L O’Brien. “Towards practical quantum metrology with photon counting”. npj Quantum Information 2, 16023 (2016).
https:/​/​doi.org/​10.1038/​npjqi.2016.23

[25] Amos Matthew Smith and H. Shelton Jacinto. “Reconfigurable Integrated Optical Interferometer Network-Based Physically Unclonable Function”. Journal of Lightwave Technology 38, 4599–4606 (2020).
https:/​/​doi.org/​10.1109/​JLT.2020.2996015

[26] Reinier van der Meer, Peter Hooijschuur, Franciscus H B Somhorst, Pim Venderbosch, Michiel de Goede, Ben Kassenberg, Henk Snijders, Caterina Taballione, Jorn Epping, Hans van den Vlekkert, Nathan Walk, Pepijn W H Pinkse, and Jelmer J Renema. “Experimental demonstration of an efficient, semi-device-independent photonic indistinguishability witness”. ISBN: 2112.00067 Publication Title: arXiv [quant-ph] (2021).

[27] Daniel J. Brod, Ernesto F. Galvão, Niko Viggianiello, Fulvio Flamini, Nicolò Spagnolo, and Fabio Sciarrino. “Witnessing Genuine Multiphoton Indistinguishability”. Phys. Rev. Lett. 122, 063602 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.063602

[28] J. Tiedau, M. Engelkemeier, B. Brecht, J. Sperling, and C. Silberhorn. “Statistical Benchmarking of Scalable Photonic Quantum Systems”. Phys. Rev. Lett. 126, 023601 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.023601

[29] Mathias Pont, Riccardo Albiero, Sarah E Thomas, Nicolò Spagnolo, Francesco Ceccarelli, Giacomo Corrielli, Alexandre Brieussel, Niccolo Somaschi, Hêlio Huet, Abdelmounaim Harouri, Aristide Lemaître, Isabelle Sagnes, Nadia Belabas, Fabio Sciarrino, Roberto Osellame, Pascale Senellart, and Andrea Crespi. “Quantifying n-photon indistinguishability with a cyclic integrated interferometer” (2022). url: http:/​/​arxiv.org/​abs/​2201.13333.
https:/​/​doi.org/​10.1103/​PhysRevX.12.031033
arXiv:2201.13333

[30] C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. Boller. “Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview”. IEEE Journal of Selected Topics in Quantum Electronics 24, 1–21 (2018).
https:/​/​doi.org/​10.1109/​JSTQE.2018.2793945

[31] Chris G. H. Roeloffzen, Marcel Hoekman, Edwin J. Klein, Lennart S. Wevers, Roelof Bernardus Timens, Denys Marchenko, Dimitri Geskus, Ronald Dekker, Andrea Alippi, Robert Grootjans, Albert van Rees, Ruud M. Oldenbeuving, Jörn P. Epping, René G. Heideman, Kerstin Wörhoff, Arne Leinse, Douwe Geuzebroek, Erik Schreuder, Paulus W. L. van Dijk, Ilka Visscher, Caterina Taddei, Youwen Fan, Caterina Taballione, Yang Liu, David Marpaung, Leimeng Zhuang, Meryem Benelajla, and Klaus-J. Boller. “Low-loss si3n4 triplex optical waveguides: Technology and applications overview”. IEEE Journal of Selected Topics in Quantum Electronics 24, 1–21 (2018).
https:/​/​doi.org/​10.1109/​JSTQE.2018.2793945

[32] William R. Clements, Peter C. Humphreys, Benjamin J. Metcalf, W. Steven Kolthammer, and Ian A. Walmsley. “Optimal design for universal multiport interferometers”. Optica 3, 1460–1465 (2016).
https:/​/​doi.org/​10.1364/​OPTICA.3.001460

[33] Francesco Mezzadri. “How to generate random matrices from the classical compact groups” (2006). url: https:/​/​arxiv.org/​abs/​math-ph/​0609050.
https:/​/​arxiv.org/​abs/​math-ph/​0609050

[34] Paolo L. Mennea, William R. Clements, Devin H. Smith, James C. Gates, Benjamin J. Metcalf, Rex H. S. Bannerman, Roel Burgwal, Jelmer J. Renema, W. Steven Kolthammer, Ian A. Walmsley, and Peter G. R. Smith. “Modular linear optical circuits”. Optica 5, 1087–1090 (2018).
https:/​/​doi.org/​10.1364/​OPTICA.5.001087

[35] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. “Quantum circuits with many photons on a programmable nanophotonic chip”. Nature 591, 54–60 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03202-1

[36] Lorenzo De Marinis, Marco Cococcioni, Odile Liboiron-Ladouceur, Giampiero Contestabile, Piero Castoldi, and Nicola Andriolli. “Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators”. Applied Sciences 11 (2021).
https:/​/​doi.org/​10.3390/​app11136232

[37] Antonio Ribeiro, Alfonso Ruocco, Laurent Vanacker, and Wim Bogaerts. “Demonstration of a 4 × 4-port universal linear circuit”. Optica 3, 1348–1357 (2016).
https:/​/​doi.org/​10.1364/​OPTICA.3.001348

[38] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad, G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, and A. Q. Liu. “An optical neural chip for implementing complex-valued neural network”. Nature Communications 12, 457 (2021).
https:/​/​doi.org/​10.1038/​s41467-020-20719-7

[39] Rui Tang, Ryota Tanomura, Takuo Tanemura, and Yoshiaki Nakano. “Ten-Port Unitary Optical Processor on a Silicon Photonic Chip”. ACS Photonics 8, 2074–2080 (2021).
https:/​/​doi.org/​10.1021/​acsphotonics.1c00419

[40] P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien. “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit”. Nature Photonics 6, 45–49 (2012).
https:/​/​doi.org/​10.1038/​nphoton.2011.283

[41] R Santagati, J W Silverstone, M J Strain, M Sorel, S Miki, T Yamashita, M Fujiwara, M Sasaki, H Terai, M G Tanner, C M Natarajan, R H Hadfield, J L O’Brien, and M G Thompson. “Silicon photonic processor of two-qubit entangling quantum logic”. Journal of Optics 19, 114006 (2017).
https:/​/​doi.org/​10.1088/​2040-8986/​aa8d56

[42] Bryn A. Bell, Guillaume S. Thekkadath, Renyou Ge, Xinlun Cai, and Ian A. Walmsley. “Testing multi-photon interference on a silicon chip”. Opt. Express 27, 35646–35658 (2019).
https:/​/​doi.org/​10.1364/​OE.27.035646

[43] Tae Joon Seok, Kyungmok Kwon, Johannes Henriksson, Jianheng Luo, and Ming C. Wu. “Wafer-scale silicon photonic switches beyond die size limit”. Optica 6, 490–494 (2019).
https:/​/​doi.org/​10.1364/​OPTICA.6.000490

[44] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran. “Parallel convolutional processing using an integrated photonic tensor core”. Nature 589, 52–58 (2021).
https:/​/​doi.org/​10.1038/​s41586-020-03070-1

[45] Francesco Hoch, Simone Piacentini, Taira Giordani, Zhen-Nan Tian, Mariagrazia Iuliano, Chiara Esposito, Anita Camillini, Gonzalo Carvacho, Francesco Ceccarelli, Nicolò Spagnolo, Andrea Crespi, Fabio Sciarrino, and Roberto Osellame. “Boson sampling in a reconfigurable continuously-coupled 3d photonic circuit” (2021).
https:/​/​doi.org/​10.1038/​s41534-022-00568-6

[46] Xiaogang Qiang, Yizhi Wang, Shichuan Xue, Renyou Ge, Lifeng Chen, Yingwen Liu, Anqi Huang, Xiang Fu, Ping Xu, Teng Yi, Fufang Xu, Mingtang Deng, Jingbo B. Wang, Jasmin D. A. Meinecke, Jonathan C. F. Matthews, Xinlun Cai, Xuejun Yang, and Junjie Wu. “Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor”. Science Advances 7, eabb8375 (2021).
https:/​/​doi.org/​10.1126/​sciadv.abb8375

[47] Yu Wang, Jang-Uk Shin, Netsanet Tessema, Menno van den Hout, Sjoerd van der Heide, Chigo Okonkwo, Hyun-Do Jung, and Nicola Calabretta. “Ultra-wide band (O to L) photonic integrated polymer cross-bar switch matrix”. Opt. Lett. 46, 5324–5327 (2021).
https:/​/​doi.org/​10.1364/​OL.437898

[48] Keijiro Suzuki, Ryotaro Konoike, Satoshi Suda, Hiroyuki Matsuura, Shu Namiki, Hitoshi Kawashima, and Kazuhiro Ikeda. “Low-Loss, Low-Crosstalk, and Large-Scale Optical Switch Based on Silicon Photonics”. J. Lightwave Technol. 38, 233–239 (2020). url: http:/​/​opg.optica.org/​jlt/​abstract.cfm?URI=jlt-38-2-233.
https:/​/​doi.org/​10.1109/​JLT.2019.2934768
http:/​/​opg.optica.org/​jlt/​abstract.cfm?URI=jlt-38-2-233

[49] Yunhong Ding, Valerija Kamchevska, Kjeld Dalgaard, Feihong Ye, Rameez Asif, Simon Gross, Michael J. Withford, Michael Galili, Toshio Morioka, and Leif Katsuo Oxenløwe. “Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit”. Scientific Reports 6, 39058 (2016).
https:/​/​doi.org/​10.1038/​srep39058

[50] Mark Dong, Genevieve Clark, Andrew J. Leenheer, Matthew Zimmermann, Daniel Dominguez, Adrian J. Menssen, David Heim, Gerald Gilbert, Dirk Englund, and Matt Eichenfield. “High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture”. Nature Photonics 16, 59–65 (2022).
https:/​/​doi.org/​10.1038/​s41566-021-00903-x

[51] Andrea Crespi, Roberto Osellame, Roberta Ramponi, Daniel J. Brod, Ernesto F. Galvão, Nicolò Spagnolo, Chiara Vitelli, Enrico Maiorino, Paolo Mataloni, and Fabio Sciarrino. “Integrated multimode interferometers with arbitrary designs for photonic boson sampling”. Nature Photonics 7, 545–549 (2013).
https:/​/​doi.org/​10.1038/​nphoton.2013.112

[52] Marco Bentivegna, Nicolò Spagnolo, Chiara Vitelli, Daniel J. Brod, Andrea Crespi, Fulvio Flamini, Roberta Ramponi, Paolo Mataloni, Roberto Osellame, Ernesto F. Galvão, and Fabio Sciarrino. “Bayesian approach to Boson sampling validation”. International Journal of Quantum Information 12, 1560028 (2014).
https:/​/​doi.org/​10.1142/​S021974991560028X

[53] Xiaogang Qiang, Xiaoqi Zhou, Jianwei Wang, Callum M. Wilkes, Thomas Loke, Sean O’Gara, Laurent Kling, Graham D. Marshall, Raffaele Santagati, Timothy C. Ralph, Jingbo B. Wang, Jeremy L. O’Brien, Mark G. Thompson, and Jonathan C. F. Matthews. “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing”. Nature Photonics 12, 534–539 (2018).
https:/​/​doi.org/​10.1038/​s41566-018-0236-y

[54] Justin B. Spring, Benjamin J. Metcalf, Peter C. Humphreys, W. Steven Kolthammer, Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter, Nathan K. Langford, Dmytro Kundys, James C. Gates, Brian J. Smith, Peter G. R. Smith, and Ian A. Walmsley. “Boson Sampling on a Photonic Chip”. Science 339, 798 (2013).
https:/​/​doi.org/​10.1126/​science.1231692

[55] Max Tillmann, Borivoje Dakić, René Heilmann, Stefan Nolte, Alexander Szameit, and Philip Walther. “Experimental boson sampling”. Nature Photonics 7, 540–544 (2013).
https:/​/​doi.org/​10.1038/​nphoton.2013.102

[56] Hailong Zhou, Yuhe Zhao, Xu Wang, Dingshan Gao, Jianji Dong, and Xinliang Zhang. “Self-Configuring and Reconfigurable Silicon Photonic Signal Processor”. ACS Photonics 7, 792–799 (2020).
https:/​/​doi.org/​10.1021/​acsphotonics.9b01673

[57] Caterina Vigliar, Stefano Paesani, Yunhong Ding, Jeremy C. Adcock, Jianwei Wang, Sam Morley-Short, Davide Bacco, Leif K. Oxenløwe, Mark G. Thompson, John G. Rarity, and Anthony Laing. “Error-protected qubits in a silicon photonic chip”. Nature Physics 17, 1137–1143 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01333-w

[58] Andrea Annoni, Emanuele Guglielmi, Marco Carminati, Giorgio Ferrari, Marco Sampietro, David AB Miller, Andrea Melloni, and Francesco Morichetti. “Unscrambling light—automatically undoing strong mixing between modes”. Light: Science & Applications 6, e17110–e17110 (2017).
https:/​/​doi.org/​10.1038/​lsa.2017.110

[59] Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White. “Scalable, Low-Energy Hybrid Photonic Space Switch”. Journal of Lightwave Technology 31, 3077–3084 (2013).
https:/​/​doi.org/​10.1109/​JLT.2013.2278708

[60] Torrey Thiessen, Philippe Grosse, Jeremy Da Fonseca, Patricia Billondeau, Bertrand Szelag, Christophe Jany, Joyce k. S. Poon, and Sylvie Menezo. “30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators”. Optics Express 27, 102–109 (2019).
https:/​/​doi.org/​10.1364/​OE.27.000102

[61] K. Suzuki, T. Yamada, M. Ishii, T. Shibata, and S. Mino. “High-Speed Optical 1 $x$ 4 Switch Based on Generalized Mach–Zehnder Interferometer With Hybrid Configuration of Silica-Based PLC and Lithium Niobate Phase-Shifter Array”. IEEE Photonics Technology Letters 19, 674–676 (2007).
https:/​/​doi.org/​10.1109/​LPT.2007.894984

[62] Mingbo He, Mengyue Xu, Yuxuan Ren, Jian Jian, Ziliang Ruan, Yongsheng Xu, Shengqian Gao, Shihao Sun, Xueqin Wen, Lidan Zhou, Lin Liu, Changjian Guo, Hui Chen, Siyuan Yu, Liu Liu, and Xinlun Cai. “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond”. Nature Photonics 13, 359–364 (2019).
https:/​/​doi.org/​10.1038/​s41566-019-0378-6

[63] Ravitej Uppu, Hans T. Eriksen, Henri Thyrrestrup, Aslı D. UÄŸurlu, Ying Wang, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Matthias C. Löbl, Richard J. Warburton, Peter Lodahl, and Leonardo Midolo. “On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source”. Nature Communications 11, 3782 (2020).
https:/​/​doi.org/​10.1038/​s41467-020-17603-9

[64] Yun Zhao, Yoshitomo Okawachi, Bok Young Kim, Chaitali Joshi, Jae K. Jang, Alessandro Farsi, X. Ji, Michal Lipson, and Alexander L. Gaeta. “Microresonator Based Discrete- and Continuous-Variable Quantum Sources on Silicon-Nitride”. OSA Quantum 2.0 Conference QM4B.3 (2020).
https:/​/​doi.org/​10.1364/​QUANTUM.2020.QM4B.3

[65] Samuel Gyger, Julien Zichi, Lucas Schweickert, Ali W. Elshaari, Stephan Steinhauer, Saimon F. Covre da Silva, Armando Rastelli, Val Zwiller, Klaus D. Jöns, and Carlos Errando-Herranz. “Reconfigurable photonics with on-chip single-photon detectors”. Nature Communications 12, 1408 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-21624-3

[66] Joern P. Epping, Denys Marchenko, Arne Leinse, Richard Mateman, Marcel Hoekman, Lennart Wevers, Edwin J. Klein, Chris G. H. Roeloffzen, Matthijn Dekkers, and René Heilmann. “Ultra-low-power stress-based phase actuator for microwave photonics”. 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017). url: http:/​/​www.osapublishing.org/​abstract.cfm?URI=CLEO_Europe-2017-CK_7_6.
http:/​/​www.osapublishing.org/​abstract.cfm?URI=CLEO_Europe-2017-CK_7_6

[67] Jared F. Bauters, Martijn J. R. Heck, Demis D. John, Jonathon S. Barton, Christiaan M. Bruinink, Arne Leinse, René G. Heideman, Daniel J. Blumenthal, and John E. Bowers. “Planar waveguides with less than 0.1 dB/​m propagation loss fabricated with wafer bonding”. Opt. Express 19, 24090–24101 (2011).
https:/​/​doi.org/​10.1364/​OE.19.024090

[68] C. Schuck, W. H. P. Pernice, and H. X. Tang. “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits”. Applied Physics Letters 102, 051101 (2013).
https:/​/​doi.org/​10.1063/​1.4788931

[69] C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang. “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip”. Nature Communications 7, 10352 (2016).
https:/​/​doi.org/​10.1038/​ncomms10352

Cited by

[1] Suraj Goel, Saroch Leedumrongwatthanakun, Natalia Herrera Valencia, Will McCutcheon, Claudio Conti, Pepijn W. H. Pinkse, and Mehul Malik, “Inverse-design of high-dimensional quantum optical circuits in a complex medium”, arXiv:2204.00578, (2022).

[2] Fulvio Flamini, Marius Krumm, Lukas J. Fiderer, Thomas Müller, and Hans J. Briegel, “Reinforcement learning and decision making via single-photon quantum walks”, arXiv:2301.13669, (2023).

[3] Taira Giordani, Francesco Hoch, Gonzalo Carvacho, Nicolò Spagnolo, and Fabio Sciarrino, “Integrated photonics in quantum technologies”, Nuovo Cimento Rivista Serie 46 2, 71 (2023).

[4] A. Cavaillès, P. Boucher, L. Daudet, I. Carron, S. Gigan, and K. Müller, “A high-fidelity and large-scale reconfigurable photonic processor for NISQ applications”, arXiv:2205.01704, (2022).

[5] Daniel Jost Brod, “Loops simplify a set-up to boost quantum computational advantage”, Nature 606 7912, 31 (2022).

[6] Yuan Li, Lingxiao Wan, Hui Zhang, Huihui Zhu, Yuzhi Shi, Lip Ket Chin, Xiaoqi Zhou, Leong Chuan Kwek, and Ai Qun Liu, “Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip”, npj Quantum Information 8, 112 (2022).

[7] Kazuma Yonezu, Yutaro Enomoto, Takato Yoshida, and Shuntaro Takeda, “Universal multi-mode linear optical quantum operation in the time domain”, arXiv:2210.15931, (2022).

[8] Kirill A. Buzaverov, Aleksandr S. Baburin, Evgeny V. Sergeev, Sergey S. Avdeev, Evgeniy S. Lotkov, Mihail Andronik, Victoria E. Stukalova, Dmitry A. Baklykov, Ivan V. Dyakonov, Nikolay N. Skryabin, Mikhail Yu. Saygin, Sergey P. Kulik, Ilya A. Ryzhikov, and Ilya A. Rodionov, “Low-loss silicon nitride photonic ICs for single-photon applications”, arXiv:2210.15984, (2022).

[9] Taira Giordani, Valerio Mannucci, Nicolò Spagnolo, Marco Fumero, Arianna Rampini, Emanuele Rodolà, and Fabio Sciarrino, “Certification of Gaussian Boson Sampling via graphs feature vectors and kernels”, Quantum Science and Technology 8 1, 015005 (2023).

[10] Riccardo Albiero, Ciro Pentangelo, Marco Gardina, Simone Atzeni, Francesco Ceccarelli, and Roberto Osellame, “Toward Higher Integration Density in Femtosecond-Laser-Written Programmable Photonic Circuits”, arXiv:2303.05150, (2023).

[11] Kirill A. Buzaverov, Aleksandr S. Baburin, Evgeny V. Sergeev, Sergey S. Avdeev, Evgeniy S. Lotkov, Mihail Andronik, Victoria E. Stukalova, Dmitry A. Baklykov, Ivan V. Dyakonov, Nikolay N. Skryabin, Mikhail Yu. Saygin, Sergey P. Kulik, Ilya A. Ryzhikov, and Ilya A. Rodionov, “Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth”, Optics Express 31 10, 16227 (2023).

[12] Emma Lomonte, Maik Stappers, Linus Krämer, Wolfram H. P. Pernice, and Francesco Lenzini, “Scalable and efficient grating couplers on low-index photonic platforms enabled by cryogenic deep silicon etching”, arXiv:2305.00907, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-08-01 14:07:04). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-08-01 14:07:02: Could not fetch cited-by data for 10.22331/q-2023-08-01-1071 from Crossref. This is normal if the DOI was registered recently.

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?