Generative Data Intelligence

Spectral resolutions in effect algebras

Date:

Anna Jenčová and Sylvia Pulmannová

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Effect algebras were introduced as an abstract algebraic model for Hilbert space effects representing quantum mechanical measurements. We study additional structures on an effect algebra $E$ that enable us to define spectrality and spectral resolutions for elements of $E$ akin to those of self-adjoint operators. These structures, called compression bases, are special families of maps on $E$, analogous to the set of compressions on operator algebras, order unit spaces or unital abelian groups. Elements of a compression base are in one-to-one correspondence with certain elements of $E$, called projections. An effect algebra is called spectral if it has a distinguished compression base with two special properties: the projection cover property (i.e., for every element $a$ in $E$ there is a smallest projection majorizing $a$), and the so-called b-comparability property, which is an analogue of general comparability in operator algebras or unital abelian groups. It is shown that in a spectral archimedean effect algebra $E$, every $ain E$ admits a unique rational spectral resolution and its properties are studied. If in addition $E$ possesses a separating set of states, then every element $ain E$ is determined by its spectral resolution. It is also proved that for some types of interval effect algebras (with RDP, archimedean divisible), spectrality of $E$ is equivalent to spectrality of its universal group and the corresponding rational spectral resolutions are the same. In particular, for convex archimedean effect algebras, spectral resolutions in $E$ are in agreement with spectral resolutions in the corresponding order unit space.

► BibTeX data

► References

[1] E.M. Alfsen, F.W. Shultz, “Non-commutative spectral theory for affine function spaces on convex sets”, Mem. Amer. Math. Soc. 6 (1976) No. 172.

[2] E. M. Alfsen, F.W. Shultz, “Geometry of State Spaces of Operator Algebras”, Birkhäuser, Boston-Basel-Berlin 2003.
https:/​/​doi.org/​10.1007/​978-1-4612-0019-2

[3] H. Barnum, J. Hilgert, “Strongly symmetric spectral convex bodies are Jordan algebra state spaces”, (2019) arXiv:1904.03753.
arXiv:1904.03753

[4] M. A. Berdikulov, “Homogeneous order unit space of type $I_2$”. Acad. Nauk. UzSSR. Ser. Phys.-Math. Nauk 4 (1990), 8-14 (Russian).

[5] M.A. Berdikulov, S.T. Odilov, “Generalized spin factor”, Uzb.Math. Journal 2(1994), 15–20.(Russian).

[6] C.C. Chang: “Algebraic analysis of many-valued logic”, Trans. Amer. Math. Soc. 88 (1957) 467-490.
https:/​/​doi.org/​10.2307/​1993227

[7] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Informational derivation of quantum theory”, Phys. Rev. A, 84 (2011), 012311, 2011.
https:/​/​doi.org/​10.1103/​PhysRevA.84.012311

[8] A. Dvurečenskij, S. Pulmannová, “New Trends in Quantum Structures”, Kluwer, Academic, Dordrecht, 2000.
https:/​/​doi.org/​10.1007/​978-94-017-2422-7

[9] D.J. Foulis, M.K. Bennett, “Effect algebras and unsharp quantum logics”, Found. Phys. 24 (1994) 1331-1352.
https:/​/​doi.org/​10.1007/​BF02283036

[10] D.J. Foulis, M.K. Bennett,“Interval and scale effect algebras”, Advances in Mathematics 19 (1997) 200-215.
https:/​/​doi.org/​10.1006/​aama.1997.0535

[11] D.J. Foulis, S. Pulmannová, “Spectral resolutions in an order unit space”, Rep. Math. Phys, 62 (2008) 323-344.
https:/​/​doi.org/​10.1016/​S0034-4877(09)00004-4

[12] D.J. Foulis, “Compressible groups”, Math. Slovaca 53 (5) (2003) 433-455.

[13] D.J. Foulis, “Compressions on partially ordered abelian groups”, Proc. Amer. Math. Soc. 132 (2004) 3581-3587;.
https:/​/​doi.org/​10.1090/​S0002-9939-04-07644-0

[14] D.J. Foulis, R.J. Greechie, M.K. Bennett, “Sums and products of interval algebras”, Int. J. Theor. Phys. 33 (1994) 2119-2136.
https:/​/​doi.org/​10.1007/​BF00675796

[15] D.J. Foulis, “Compressible groups with general comparability”, Math. Slovaca 55 (4) (2005) 409-429.

[16] D.J. Foulis, “Compression bases in unital groups”, Int. J. Theoret. Phys. 44 (12) (2005) 2153-2160.
https:/​/​doi.org/​10.1007/​s10773-005-8014-2

[17] D.J. Foulis, S. Pulmannová, “Monotone $sigma$-complete RC-groups”, J. London Math. Soc. 73(2) (2006) 1325-1346.
https:/​/​doi.org/​10.1112/​S002461070602271X

[18] D.J. Foulis, “Spectral resolution in a Rickart comgroup”, Rep. Math. Phys. 54 (2) (2004), 229-250.
https:/​/​doi.org/​10.1016/​S0034-4877(04)80016-8

[19] K.R. Goodearl, “Partially ordered abelian groups with interpolation” Math. Surveys and Monographs No. 20, AMS Providence, Rhode Island 1980.

[20] S.P. Gudder, S. Pulmannová, “Representation theorem for convex effect algebra”, Comment. Math. Univ. Carolinae 39 (4) (1998) 645-659.

[21] S. Gudder, S. Pulmannová, E. Beltrametti, S. Bugajski, “Convex and linear effect algebras”, Rep. Math. Phys. 44 (1999) 359-379.
https:/​/​doi.org/​10.1016/​S0034-4877(00)87245-6

[22] S. Gudder, “Compressible effect algebras”, Rep. Math. Phys. 54 (2004) 93-114.
https:/​/​doi.org/​10.1016/​S0034-4877(04)80008-9

[23] S. Gudder, R. Greechie, “Sequential product on effect algebras”, Rep. Math. Phys. 49 (2002), 87-111.
https:/​/​doi.org/​10.1016/​S0034-4877(02)80007-6

[24] S. Gudder, “Compression bases in effect algebras”, Demonstratio Math. 39 (2006) 43-58.
https:/​/​doi.org/​10.1515/​dema-2006-0106

[25] S. Gudder, “Convex and sequential effect algebras”, arXiv:1802.01265vl[quant-ph] (2018).
arXiv:1802.01265

[26] J. Harding, “Regularity in quantum logic”, Int. J. Theor. Phys. 37 (1998), 1173–1212.
https:/​/​doi.org/​10.1023/​A:1026665818335

[27] L. Hardy, “Quantum Theory From Five Reasonable Axioms”, (2001), arXiv:quant-ph/​0101012.
arXiv:quant-ph/0101012

[28] B. Jacobs, B. Westerbaan, “An effect-theoretic account of Lebesgue integration”, Electronic Notes in Theoretical Computer Science 319 (2015) 239-253.
https:/​/​doi.org/​10.1016/​j.entcs.2015.12.015

[29] G. Jenča, S. Pulmannová, “Orthocomplete effect algebras”, Proc. Am. Math. Soc. 131(9)(2003) 2663-2671.
https:/​/​doi.org/​10.1090/​S0002-9939-03-06990-9

[30] A. Jenčová, S. Pulmannová, “Geometric and algebraic aspects of spectrality in order unit spaces: a comparison”, Journal of Mathematical Analysis and Applications 504 (2021), 125360.
https:/​/​doi.org/​10.1016/​j.jmaa.2021.125360

[31] A. Jenčová, S. Pulmannová, “Spectral resolutions in effect algebras”, (2021), arXiv:2111.02166v1.
arXiv:2111.02166

[32] A. Jenčová and M. Plávala, “On the properties of spectral effect algebras”, Quantum 3 (2019), 148.
https:/​/​doi.org/​10.22331/​q-2019-06-03-148

[33] D. Mundici, “Interpretation of AF C*-algebras in Łukasziewicz sentential calculus”, J. Funct. Anal. 65 (1986) 15-63.
https:/​/​doi.org/​10.1016/​0022-1236(86)90015-7

[34] P. Pták, S. Pulmannová, “Orthomodular Structures as Quantum Logics”, Kluwer, Dordrecht and VEDA, Bratislava (1991).

[35] S. Pulmannová, “Divisible effect algebras and interval effect algebras”, Commentationes Mathematicae Universitatis Carolinae 42 (2001) 219-236.

[36] S. Pulmannová, “Effect algebras with compressions”, Rep. Math. Phys. 58 (2006) 301-324.
https:/​/​doi.org/​10.1016/​S0034-4877(06)80054-6

[37] K. Ravindran, “On a structure theory of effect algebras”, PhD thesis, Kansas State Univ., Manhattan, Kansas, (1996).

[38] A. Westerbaan, B. Westerbaan, and J. van de Wetering, “A characterisation of ordered abstract probabilities”, Proceedings of the 35th Annual ACM/​IEEE Symposium on Logic in Computer Science, (2020).
https:/​/​doi.org/​10.1145/​3373718.3394742

[39] A. Westerbaan, B. Westerbaan, and J. van de Wetering, “The three types of normal sequential effect algebras”, Quantum 4, 378 (2020).
https:/​/​doi.org/​10.22331/​q-2020-12-24-378

[40] J. van de Wetering, “An effect-theoretic reconstruction of quantum theory”, Compositionality 1 (2019), 1.
https:/​/​doi.org/​10.32408/​compositionality-1-1

Cited by

[1] Anna Jenčová and Sylvia Pulmannová, “Spectral order unit spaces and JB-algebras”, arXiv:2208.08740.

The above citations are from SAO/NASA ADS (last updated successfully 2022-11-15 02:01:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2022-11-15 02:01:12).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?