Generative Data Intelligence

Quantum Rabi interferometry of motion and radiation

Date:

Kimin Park1,2, Petr Marek1, Ulrik L. Andersen2, and Radim Filip1

1Department of Optics, Palacky University, 77146 Olomouc, Czech Republic
2Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Building 307, Fysikvej, 2800 Kgs. Lyngby, Denmark

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The precise determination of a displacement of a mechanical oscillator or a microwave field in a predetermined direction in phase space can be carried out with trapped ions or superconducting circuits, respectively, by coupling the oscillator with ancilla qubits.

Through that coupling, the displacement information is transferred to the qubits which are then subsequently read out. However, unambiguous estimation of displacement in an unknown direction in the phase space has not been attempted in such oscillator-qubit systems. Here, we propose a hybrid oscillator-qubit interferometric setup for the unambiguous estimation of phase space displacements in an arbitrary direction, based on feasible Rabi interactions beyond the rotating-wave approximation. Using such a hybrid Rabi interferometer for quantum sensing, we show that the performance is superior to the ones attained by single-mode estimation schemes and a conventional interferometer based on Jaynes-Cummings interactions. Moreover, we find that the sensitivity of the Rabi interferometer is independent of the thermal occupation of the oscillator mode, and thus cooling it to the ground state before sensing is not required. We also perform a thorough investigation of the effect of qubit dephasing and oscillator thermalization. We find the interferometer to be fairly robust, outperforming different benchmark estimation schemes even for large dephasing and thermalization.

We have developed a new hybrid oscillator-qubit interferometric setup that enables the unambiguous estimation of phase space displacements in any direction, improving upon previous methods that were limited to predetermined directions. This innovative approach, called the Rabi interferometer, offers superior performance compared to single-mode estimation schemes and conventional interferometers. Notably, it does not require cooling the oscillator to the ground state, and it remains robust even in the presence of qubit dephasing and oscillator thermalization. This advancement in quantum sensing could have significant implications for a range of applications.

â–º BibTeX data

â–º References

[1] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing” Reviews of Modern Physics 89, 035002 (2017).
https:/​/​doi.org/​10.1103/​REVMODPHYS.89.035002/​

[2] Vittorio Giovannetti, Seth Lloyd, and Lorenzo MacCone, “Advances in quantum metrology” Nature Photonics 5, 222–229 (2011).
https:/​/​doi.org/​10.1038/​nphoton.2011.35

[3] Jasminder S Sidhuand Pieter Kok “Geometric perspective on quantum parameter estimation” AVS Quantum Science 2, 014701 (2020).
https:/​/​doi.org/​10.1116/​1.5119961

[4] Zeeshan Ahmed, Yuri Alexeev, Giorgio Apollinari, Asimina Arvanitaki, David Awschalom, Karl K. Berggren, Karl Van Bibber, Przemyslaw Bienias, Geoffrey Bodwin, Malcolm Boshier, Daniel Bowring, Davide Braga, Karen Byrum, Gustavo Cancelo, Gianpaolo Carosi, Tom Cecil, Clarence Chang, Mattia Checchin, Sergei Chekanov, Aaron Chou, Aashish Clerk, Ian Cloet, Michael Crisler, Marcel Demarteau, Ranjan Dharmapalan, Matthew Dietrich, Junjia Ding, Zelimir Djurcic, John Doyle, James Fast, Michael Fazio, Peter Fierlinger, Hal Finkel, Patrick Fox, Gerald Gabrielse, Andrei Gaponenko, Maurice Garcia-Sciveres, Andrew Geraci, Jeffrey Guest, Supratik Guha, Salman Habib, Ron Harnik, Amr Helmy, Yuekun Heng, Jason Henning, Joseph Heremans, Phay Ho, Jason Hogan, Johannes Hubmayr, David Hume, Kent Irwin, Cynthia Jenks, Nick Karonis, Raj Kettimuthu, Derek Kimball, Jonathan King, Eve Kovacs, Richard Kriske, Donna Kubik, Akito Kusaka, Benjamin Lawrie, Konrad Lehnert, Paul Lett, Jonathan Lewis, Pavel Lougovski, Larry Lurio, Xuedan Ma, Edward May, Petra Merkel, Jessica Metcalfe, Antonino Miceli, Misun Min, Sandeep Miryala, John Mitchell, Vesna Mitrovic, Holger Mueller, Sae Woo Nam, Hogan Nguyen, Howard Nicholson, Andrei Nomerotski, Michael Norman, Kevin O’Brien, Roger O’Brient, Umeshkumar Patel, Bjoern Penning, Sergey Perverzev, Nicholas Peters, Raphael Pooser, Chrystian Posada, James Proudfoot, Tenzin Rabga, Tijana Rajh, Sergio Rescia, Alexander Romanenko, Roger Rusack, Monika Schleier-Smith, Keith Schwab, Julie Segal, Ian Shipsey, Erik Shirokoff, Andrew Sonnenschein, Valerie Taylor, Robert Tschirhart, Chris Tully, David Underwood, Vladan Vuletic, Robert Wagner, Gensheng Wang, Harry Weerts, Nathan Woollett, Junqi Xie, Volodymyr Yefremenko, John Zasadzinski, Jinlong Zhang, Xufeng Zhang, and Vishnu Zutshi, “Quantum Sensing for High Energy Physics” (2018).
arXiv:1803.11306

[5] Domenico D’Alessandro “Introduction to Quantum Control and Dynamics” Chapman Hall/​CRC (2021).
https:/​/​doi.org/​10.1201/​9781003051268

[6] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing” Nature Photonics 12, 724–733 (2018).
https:/​/​doi.org/​10.1038/​s41566-018-0301-6

[7] Xueshi Guo, Casper R. Breum, Johannes Borregaard, Shuro Izumi, Mikkel V. Larsen, Tobias Gehring, Matthias Christandl, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, “Distributed quantum sensing in a continuous-variable entangled network” Nature Physics 2019 16:3 16, 281–284 (2019).
https:/​/​doi.org/​10.1038/​s41567-019-0743-x

[8] B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum Sensing with Squeezed Light” ACS Photonics 6, 1307–1318 (2019).
https:/​/​doi.org/​10.1021/​acsphotonics.9b00250

[9] Emanuele Polino, Mauro Valeri, Nicolò Spagnolo, and Fabio Sciarrino, “Photonic quantum metrology” AVS Quantum Science 2, 024703 (2020).
https:/​/​doi.org/​10.1116/​5.0007577

[10] Rafal Demkowicz-Dobrzański, Marcin Jarzyna, and Jan Kołodyński, “Chapter Four – Quantum Limits in Optical Interferometry” Elsevier (2015).
https:/​/​doi.org/​10.1016/​bs.po.2015.02.003

[11] LIGO Scientific Collaborationand Virgo Collaboration “Observation of gravitational waves from a binary black hole merger” Physical Review Letters 116, 061102 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.061102

[12] BP Abbott, R Abbott, TD Abbott, and S Abraham et al.s, “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA” Living Rev Relativ (2020).
https:/​/​doi.org/​10.1007/​s41114-020-00026-9

[13] C. Lang, C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, “Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies” Nature Physics 9, 345–348 (2013).
https:/​/​doi.org/​10.1038/​nphys2612

[14] Yvonne Y. Gao, Brian J. Lester, Yaxing Zhang, Chen Wang, Serge Rosenblum, Luigi Frunzio, Liang Jiang, S. M. Girvin, and Robert J. Schoelkopf, “Programmable Interference between Two Microwave Quantum Memories” Physical Review X 8 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.021073

[15] Kai Bongs, Michael Holynski, Jamie Vovrosh, Philippe Bouyer, Gabriel Condon, Ernst Rasel, Christian Schubert, Wolfgang P. Schleich, and Albert Roura, “Taking atom interferometric quantum sensors from the laboratory to real-world applications” Nature Reviews Physics 1, 731–739 (2019).
https:/​/​doi.org/​10.1038/​s42254-019-0117-4

[16] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard, “Optics and interferometry with atoms and molecules” Reviews of Modern Physics 81, 1051–1129 (2009).
https:/​/​doi.org/​10.1103/​RevModPhys.81.1051

[17] Luca Pezzè, Augusto Smerzi, Markus K. Oberthaler, Roman Schmied, and Philipp Treutlein, “Quantum metrology with nonclassical states of atomic ensembles” Reviews of Modern Physics 90 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.035005

[18] Bing Chen, Cheng Qiu, Shuying Chen, Jinxian Guo, L. Q. Chen, Z. Y. Ou, and Weiping Zhang, “Atom-Light Hybrid Interferometer” Physical Review Letters 115, 043602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.043602

[19] Mankei Tsangand Carlton M. Caves “Coherent Quantum-Noise Cancellation for Optomechanical Sensors” Phys. Rev. Lett. 105, 123601 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.123601

[20] Ali Motazedifard, A. Dalafi, and M. H. Naderi, “Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic Bose-Einstein condensate” AVS Quantum Science 3, 24701 (2021).
https:/​/​doi.org/​10.1116/​5.0035952/​997321

[21] F. Bemani, O. ÄŒernotík, L. Ruppert, D. Vitali, and R. Filip, “Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light” Phys. Rev. Appl. 17, 034020 (2022).
https:/​/​doi.org/​10.1103/​PhysRevApplied.17.034020

[22] D A Dalvit, R L Filho, and F Toscano, “Quantum metrology at the Heisenberg limit with ion trap motional compass states” New Journal of Physics 8, 276–276 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​11/​276

[23] Kasper Duivenvoorden, Barbara M. Terhal, and Daniel Weigand, “Single-mode displacement sensor” Phys. Rev. A 95, 012305 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.012305

[24] Daniel Braun, Gerardo Adesso, Fabio Benatti, Roberto Floreanini, Ugo Marzolino, Morgan W. Mitchell, and Stefano Pirandola, “Quantum-enhanced measurements without entanglement” Reviews of Modern Physics 90, 1–52 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.035006

[25] Fabian Wolf, Chunyan Shi, Jan C. Heip, Manuel Gessner, Luca Pezzè, Augusto Smerzi, Marius Schulte, Klemens Hammerer, and Piet O. Schmidt, “Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions” Nature Communications 10 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-10576-4

[26] Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wilson, and Dietrich Leibfried, “Quantum-enhanced sensing of a single-ion mechanical oscillator.” Nature 572, 86–90 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1421-y

[27] Shavindra P. Premaratne, F. C. Wellstood, and B. S. Palmer, “Microwave photon Fock state generation by stimulated Raman adiabatic passage” Nature Communications 8 (2017).
https:/​/​doi.org/​10.1038/​ncomms14148

[28] W. Wang, L. Hu, Y. Xu, K. Liu, Y. Ma, Shi Biao Zheng, R. Vijay, Y. P. Song, L. M. Duan, and L. Sun, “Converting Quasiclassical States into Arbitrary Fock State Superpositions in a Superconducting Circuit” Physical Review Letters 118 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.223604

[29] Wolfgang Pfaff, Christopher J. Axline, Luke D. Burkhart, Uri Vool, Philip Reinhold, Luigi Frunzio, Liang Jiang, Michel H. Devoret, and Robert J. Schoelkopf, “Controlled release of multiphoton quantum states from a microwave cavity memory” Nature Physics 13, 882–887 (2017).
https:/​/​doi.org/​10.1038/​nphys4143

[30] Mario F. Gely, Marios Kounalakis, Christian Dickel, Jacob Dalle, Rémy Vatré, Brian Baker, Mark D. Jenkins, and Gary A. Steele, “Observation and stabilization of photonic Fock states in a hot radio-frequency resonator” Science 363, 1072–1075 (2019).
https:/​/​doi.org/​10.1126/​science.aaw3101

[31] Yiwen Chu, Prashanta Kharel, Taekwan Yoon, Luigi Frunzio, Peter T. Rakich, and Robert J. Schoelkopf, “Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator” Nature 563, 666–670 (2018).
https:/​/​doi.org/​10.1038/​s41586-018-0717-7

[32] Dany Lachance-Quirion, Yutaka Tabuchi, Seiichiro Ishino, Atsushi Noguchi, Toyofumi Ishikawa, Rekishu Yamazaki, and Yasunobu Nakamura, “Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet” Science Advances 3 (2017).
https:/​/​doi.org/​10.1126/​sciadv.1603150

[33] S. P. Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono, A. Noguchi, K. Usami, and Y. Nakamura, “Dissipation-Based Quantum Sensing of Magnons with a Superconducting Qubit” Phys. Rev. Lett. 125, 117701 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.117701

[34] Dany Lachance-Quirion, Samuel Piotr Wolski, Yutaka Tabuchi, Shingo Kono, Koji Usami, and Yasunobu Nakamura, “Entanglement-based single-shot detection of a single magnon with a superconducting qubit” Science 367, 425–428 (2020).
https:/​/​doi.org/​10.1126/​science.aaz9236

[35] Akash V. Dixit, Srivatsan Chakram, Kevin He, Ankur Agrawal, Ravi K. Naik, David I. Schuster, and Aaron Chou, “Searching for Dark Matter with a Superconducting Qubit” Phys. Rev. Lett. 126, 141302 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.141302

[36] Zhixin Wang, Mingrui Xu, Xu Han, Wei Fu, Shruti Puri, S. M. Girvin, Hong X. Tang, S. Shankar, and M. H. Devoret, “Quantum Microwave Radiometry with a Superconducting Qubit” Phys. Rev. Lett. 126, 180501 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.180501

[37] M. Kristen, A. Schneider, A. Stehli, T. Wolz, S. Danilin, H. S. Ku, J. Long, X. Wu, R. Lake, D. P. Pappas, A. V. Ustinov, and M. Weides, “Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit” npj Quantum Information 2020 6:1 6, 1–5 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00287-w

[38] W. Wang, Z. J. Chen, X. Liu, W. Cai, Y. Ma, X. Mu, X. Pan, Z. Hua, L. Hu, Y. Xu, H. Wang, Y. P. Song, X. B. Zou, C. L. Zou, and L. Sun, “Quantum-enhanced radiometry via approximate quantum error correction” Nature Communications 2022 13:1 13, 1–8 (2022).
https:/​/​doi.org/​10.1038/​s41467-022-30410-8

[39] W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Zi Jie Chen, H. Wang, Y. P. Song, H. Yuan, C. L. Zou, L. M. Duan, and L. Sun, “Heisenberg-limited single-mode quantum metrology in a superconducting circuit” Nature Communications 10 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-12290-7

[40] Kimin Park, Changhun Oh, Radim Filip, and Petr Marek, “Optimal Estimation of Conjugate Shifts in Position and Momentum by Classically Correlated Probes and Measurements” Phys. Rev. Appl. 18, 014060 (2022).
https:/​/​doi.org/​10.1103/​PhysRevApplied.18.014060

[41] Meixiu Li, Tao Chen, J. Justin Gooding, and Jingquan Liu, “Review of carbon and graphene quantum dots for sensing” ACS Sensors 4, 1732–1748 (2019).
https:/​/​doi.org/​10.1021/​acssensors.9b00514

[42] Romana Schirhagl, Kevin Chang, Michael Loretz, and Christian L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology” Annual Review of Physical Chemistry 65, 83–105 (2014).
https:/​/​doi.org/​10.1146/​annurev-physchem-040513-103659

[43] D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home, “Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets” Phys. Rev. Lett. 116, 140402 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.140402

[44] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage, “Trapped-ion quantum computing: Progress and challenges” Applied Physics Reviews 6 (2019) 021314.
https:/​/​doi.org/​10.1063/​1.5088164

[45] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home, “Encoding a qubit in a trapped-ion mechanical oscillator” Nature 2019 566:7745 566, 513–517 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0960-6

[46] G Wendin “Quantum information processing with superconducting circuits: a review” Reports on Progress in Physics 80, 106001 (2017).
https:/​/​doi.org/​10.1088/​1361-6633/​aa7e1a

[47] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu xi Liu, and Franco Nori, “Microwave photonics with superconducting quantum circuits” Physics Reports 718-719, 1–102 (2017) Microwave photonics with superconducting quantum circuit.
https:/​/​doi.org/​10.1016/​j.physrep.2017.10.002

[48] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret, “Gated Conditional Displacement Readout of Superconducting Qubits” Physical Review Letters 122, 080502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.080502

[49] Alexandre Blais, Steven M. Girvin, and William D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics” Nature Physics 16, 247–256 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0806-z

[50] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Quantum error correction of a qubit encoded in grid states of an oscillator” Nature 2020 584:7821 584, 368–372 (2020).
https:/​/​doi.org/​10.1038/​s41586-020-2603-3

[51] A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura, “Hybrid quantum systems with circuit quantum electrodynamics” Nature Physics 2020 16:3 16, 257–267 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0797-9

[52] Sangil Kwon, Akiyoshi Tomonaga, Gopika Lakshmi Bhai, Simon J. Devitt, and Jaw Shen Tsai, “Gate-based superconducting quantum computing” Journal of Applied Physics 129 (2021).
https:/​/​doi.org/​10.1063/​5.0029735

[53] Alexandre Blais, Arne L Grimsmo, S M Girvin, and Andreas Wallraff, “Circuit quantum electrodynamics” Reviews of Modern Physics 93 (2021).
https:/​/​doi.org/​10.1103/​RevModPhys.93.025005

[54] S C Burd, R Srinivas, J J Bollinger, A C Wilson, D J Wineland, D Leibfried, D H Slichter, and D. T.C. Allcock, “Quantum amplification of mechanical oscillator motion” Science 364, 1163–1165 (2019).
https:/​/​doi.org/​10.1126/​science.aaw2884

[55] Norman F. Ramsey “A new molecular beam resonance method” Physical Review 76, 996 (1949).
https:/​/​doi.org/​10.1103/​PhysRev.76.996

[56] F. Riehle, Th Kisters, A. Witte, J. Helmcke, and Ch J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer” Physical Review Letters 67, 177–180 (1991).
https:/​/​doi.org/​10.1103/​PhysRevLett.67.177

[57] Malo Cadoret, Estefania De Mirandes, Pierre Cladé, Saïda Guellati-Khélifa, Catherine Schwob, François Nez, Lucile Julien, and François Biraben, “Combination of bloch oscillations with a Ramsey-Bordé interferometer: New determination of the fine structure constant” Physical Review Letters 101 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.230801

[58] A. Arias, G. Lochead, T. M. Wintermantel, S. Helmrich, and S. Whitlock, “Realization of a Rydberg-Dressed Ramsey Interferometer and Electrometer” Phys. Rev. Lett. 122, 053601 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.053601

[59] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states” Science 304, 1476–1478 (2004).
https:/​/​doi.org/​10.1126/​science.1097576

[60] M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt, “Ion-trap measurements of electric-field noise near surfaces” Reviews of Modern Physics 87, 1419 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.1419

[61] Jacob Hastrup, Kimin Park, Jonatan Bohr Brask, Radim Filip, and Ulrik Lund Andersen, “Measurement-free preparation of grid states” npj Quantum Information 2021 7:1 7, 1–8 (2021).
https:/​/​doi.org/​10.1038/​s41534-020-00353-3

[62] Jacob Hastrup, Kimin Park, Radim Filip, and Ulrik Lund Andersen, “Unconditional Preparation of Squeezed Vacuum from Rabi Interactions” Phys. Rev. Lett. 126, 153602 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.153602

[63] Kimin Park, Petr Marek, and Radim Filip, “Deterministic nonlinear phase gates induced by a single qubit” New Journal of Physics 20, 053022 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​AABB86

[64] Kimin Park, Jacob Hastrup, Jonas Schou Neergaard-Nielsen, Jonatan Bohr Brask, Radim Filip, and Ulrik L. Andersen, “Slowing quantum decoherence of oscillators by hybrid processing” npj Quantum Information 2022 8:1 8, 1–8 (2022).
https:/​/​doi.org/​10.1038/​s41534-022-00577-5

[65] Jacob Hastrup, Kimin Park, Jonatan Bohr Brask, Radim Filip, and Ulrik Lund Andersen, “Universal Unitary Transfer of Continuous-Variable Quantum States into a Few Qubits” Physical Review Letters 128, 110503 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.110503

[66] Myung-Joong Hwang, Ricardo Puebla, and Martin B. Plenio, “Quantum Phase Transition and Universal Dynamics in the Rabi Model” Phys. Rev. Lett. 115, 180404 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.180404

[67] M. L. L. Cai, Z. D. D. Liu, W. D. D. Zhao, Y. K. K. Wu, Q. X. X. Mei, Y. Jiang, L. He, X. Zhang, Z. C. C. Zhou, and L. M. M. Duan, “Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion” Nature Communications 12, 1126 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-21425-8

[68] C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, and C. F. Roos, “Entanglement-enhanced detection of single-photon scattering events” Nature Photonics 7, 630–633 (2013).
https:/​/​doi.org/​10.1038/​nphoton.2013.172

[69] Kevin A. Gilmore, Matthew Affolter, Robert J. Lewis-Swan, Diego Barberena, Elena Jordan, Ana Maria Rey, and John J. Bollinger, “Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals” Science 373, 673–678 (2021).
https:/​/​doi.org/​10.1126/​science.abi5226

[70] S. Martínez-Garaot, A. Rodriguez-Prieto, and J. G. Muga, “Interferometer with a driven trapped ion” Physical Review A 98 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.043622

[71] Katherine C. McCormick, Jonas Keller, David J. Wineland, Andrew C. Wilson, and Dietrich Leibfried, “Coherently displaced oscillator quantum states of a single trapped atom” Quantum Science and Technology 4 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​ab0513

[72] Louis Garbe, Matteo Bina, Arne Keller, Matteo G.A. Paris, and Simone Felicetti, “Critical Quantum Metrology with a Finite-Component Quantum Phase Transition” Physical Review Letters 124, 120504 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.120504

[73] R. Di Candia, F. Minganti, K. V. Petrovnin, G. S. Paraoanu, and S. Felicetti, “Critical parametric quantum sensing” npj Quantum Information 2023 9:1 9, 1–9 (2023).
https:/​/​doi.org/​10.1038/​s41534-023-00690-z

[74] Yaoming Chu, Shaoliang Zhang, Baiyi Yu, and Jianming Cai, “Dynamic Framework for Criticality-Enhanced Quantum Sensing” Physical Review Letters 126, 10502 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.010502

[75] Peter A. Ivanov “Enhanced two-parameter phase-space-displacement estimation close to a dissipative phase transition” Phys. Rev. A 102, 052611 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.102.052611

[76] Anton Frisk Kockum, Adam Miranowicz, Simone De Liberato, Salvatore Savasta, and Franco Nori, “Ultrastrong coupling between light and matter” Nature Reviews Physics 2019 1:1 1, 19–40 (2019).
https:/​/​doi.org/​10.1038/​s42254-018-0006-2

[77] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, “Ultrastrong coupling regimes of light-matter interaction” Rev. Mod. Phys. 91, 025005 (2019).
https:/​/​doi.org/​10.1103/​RevModPhys.91.025005

[78] Peter A. Ivanov, Kilian Singer, Nikolay V. Vitanov, and Diego Porras, “Quantum Sensors Assisted by Spontaneous Symmetry Breaking for Detecting Very Small Forces” Phys. Rev. Appl. 4, 054007 (2015).
https:/​/​doi.org/​10.1103/​PhysRevApplied.4.054007

[79] Peter A. Ivanov, Nikolay V. Vitanov, and Kilian Singer, “High-precision force sensing using a single trapped ion” Scientific Reports 6, 1–8 (2016).
https:/​/​doi.org/​10.1038/​srep28078

[80] Peter A. Ivanovand Nikolay V. Vitanov “Quantum sensing of the phase-space-displacement parameters using a single trapped ion” Phys. Rev. A 97, 032308 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.032308

[81] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions” Rev. Mod. Phys. 75, 281–324 (2003).
https:/​/​doi.org/​10.1103/​RevModPhys.75.281

[82] Michael J Biercuk, Hermann Uys, Joe W Britton, Aaron P Vandevender, and John J Bollinger, “Ultrasensitive detection of force and displacement using trapped ions” Nature Nanotechnology 5, 646–650 (2010).
https:/​/​doi.org/​10.1038/​nnano.2010.165

[83] K. A. Gilmore, J. G. Bohnet, B. C. Sawyer, J. W. Britton, and J. J. Bollinger, “Amplitude Sensing below the Zero-Point Fluctuations with a Two-Dimensional Trapped-Ion Mechanical Oscillator” Physical Review Letters 118, 1–5 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.263602

[84] M. Affolter, K. A. Gilmore, J. E. Jordan, and J. J. Bollinger, “Phase-coherent sensing of the center-of-mass motion of trapped-ion crystals” Physical Review A 102, 052609 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.102.052609

[85] Helmut Ritsch, Peter Domokos, Ferdinand Brennecke, and Tilman Esslinger, “Cold atoms in cavity-generated dynamical optical potentials” Rev. Mod. Phys. 85, 553–601 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.553

[86] Ze-Liang Xiang, Sahel Ashhab, J. Q. You, and Franco Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems” Rev. Mod. Phys. 85, 623–653 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.623

[87] Shlomi Kotler, Raymond W. Simmonds, Dietrich Leibfried, and David J. Wineland, “Hybrid quantum systems with trapped charged particles” Phys. Rev. A 95, 022327 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.022327

[88] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, “Programmable quantum simulations of spin systems with trapped ions” Rev. Mod. Phys. 93, 025001 (2021).
https:/​/​doi.org/​10.1103/​RevModPhys.93.025001

[89] Gershon Kurizki, Patrice Bertet, Yuimaru Kubo, Klaus Mølmer, David Petrosyan, Peter Rabl, and Jörg Schmiedmayer, “Quantum technologies with hybrid systems” Proceedings of the National Academy of Sciences 112, 3866–3873 (2015).
https:/​/​doi.org/​10.1073/​pnas.1419326112

[90] Bruce W. Shoreand Peter L. Knight “The Jaynes-Cummings Model” Journal of Modern Optics 40, 1195–1238 (1993).
https:/​/​doi.org/​10.1080/​09500349314551321

[91] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the Jaynes-Cummings ladder and observing its $sqrt{n}$ nonlinearity in a cavity QED system” Nature 454, 315–318 (2008).
https:/​/​doi.org/​10.1038/​nature07112

[92] Philipp Schindler, Daniel Nigg, Thomas Monz, Julio T. Barreiro, Esteban Martinez, Shannon X. Wang, Stephan Quint, Matthias F. Brandl, Volckmar Nebendahl, Christian F. Roos, Michael Chwalla, Markus Hennrich, and Rainer Blatt, “A quantum information processor with trapped ions” New Journal of Physics 15, 123012 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​12/​123012

[93] J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model” Physical Review Letters 105 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.263603

[94] T. P. Spiller, Kae Nemoto, Samuel L. Braunstein, W. J. Munro, P. Van Loock, and G. J. Milburn, “Quantum computation by communication” New Journal of Physics 8, 30 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​2/​030

[95] Kimin Park, Julien Laurat, and Radim Filip, “Hybrid Rabi interactions with traveling states of light” New Journal of Physics 22, 013056 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​AB6877

[96] Bastian Hacker, Stephan Welte, Severin Daiss, Armin Shaukat, Stephan Ritter, Lin Li, and Gerhard Rempe, “Deterministic creation of entangled atom–light Schrödinger-cat states” Nature Photonics 13, 110–115 (2019).
https:/​/​doi.org/​10.1038/​s41566-018-0339-5

[97] Zhang-qi Yin, Tongcang Li, Xiang Zhang, and L. M. Duan, “Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling” Phys. Rev. A 88, 033614 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.033614

[98] Wojciech Gorecki, Rafal Demkowicz-Dobrzanski, Howard M. Wiseman, and Dominic W. Berry, “$pi$-Corrected Heisenberg Limit” Physical Review Letters 124 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.030501

[99] W. H. Zurek “Sub-Planck structure in phase space and its relevance for quantum decoherence” Nature 2001 412:6848 412, 712–717 (2001).
https:/​/​doi.org/​10.1038/​35089017

[100] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein, “Weak-force detection with superposed coherent states” Phys. Rev. A 66, 023819 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.66.023819

[101] Francesco Albarelli, Marco G. Genoni, Matteo G.A. A Paris, and Alessandro Ferraro, “Resource theory of quantum non-Gaussianity and Wigner negativity” Physical Review A 98, 52350 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052350

[102] W. H. Zurek “Sub-Planck structure in phase space and its relevance for quantum decoherence” Nature 2001 412:6848 412, 712–717 (2001).
https:/​/​doi.org/​10.1038/​35089017

[103] C. Bonato, M. S. Blok, H. T. Dinani, D. W. Berry, M. L. Markham, D. J. Twitchen, and R. Hanson, “Optimized quantum sensing with a single electron spin using real-time adaptive measurements” Nature Nanotechnology 11, 247–252 (2016).
https:/​/​doi.org/​10.1038/​nnano.2015.261

[104] E. D. Herbschleb, H. Kato, T. Makino, S. Yamasaki, and N. Mizuochi, “Ultra-high dynamic range quantum measurement retaining its sensitivity” Nature Communications 2021 12:1 12, 1–8 (2021).
https:/​/​doi.org/​10.1038/​s41467-020-20561-x

[105] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver, “Superconducting Qubits: Current State of Play” Annual Review of Condensed Matter Physics 11, 369–395 (2020).
https:/​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605

[106] C J Ballance, T P Harty, N M Linke, M A Sepiol, and D M Lucas, “High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits” Physical Review Letters 117 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504

[107] Stephen M. Barnettand Paul M. Radmore “Methods in Theoretical Quantum Optics” Oxford University Press (2002).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780198563617.001.0001

[108] M. Penasa, S. Gerlich, T. Rybarczyk, V. Métillon, M. Brune, J. M. Raimond, S. Haroche, L. Davidovich, and I. Dotsenko, “Measurement of a microwave field amplitude beyond the standard quantum limit” Physical Review A 94, 1–7 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.022313

[109] M Aspelmeyer, TJ Kippenberg, and F Marquardt, “Cavity optomechanics” Reviews of Modern Physics (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.1391

[110] J. D. Teufel, Dale Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime” Nature 2011 471:7337 471, 204–208 (2011).
https:/​/​doi.org/​10.1038/​nature09898

[111] AS Holevo “Quantum systems, channels, information” degruyter.com (2019).
https:/​/​doi.org/​10.1515/​9783110642490

[112] Matteo G.A. Paris “Quantum estimation for quantum technology” International Journal of Quantum Information 7, 125–137 (2009).
https:/​/​doi.org/​10.1142/​S0219749909004839

[113] Jing Liu, Jie Chen, Xiao Xing Jing, and Xiaoguang Wang, “Quantum Fisher information and symmetric logarithmic derivative via anti-commutators” Journal of Physics A: Mathematical and Theoretical 49 (2016).
https:/​/​doi.org/​10.1088/​1751-8113/​49/​27/​275302

[114] Lukas J. Fiderer, Tommaso Tufarelli, Samanta Piano, and Gerardo Adesso, “General Expressions for the Quantum Fisher Information Matrix with Applications to Discrete Quantum Imaging” PRX Quantum 2, 020308 (2021).
https:/​/​doi.org/​10.1103/​PRXQUANTUM.2.020308

[115] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul P.P.P. Grasman, and Eric-Jan Wagenmakers, “A Tutorial on Fisher information” Journal of Mathematical Psychology 80, 40–55 (2017).
https:/​/​doi.org/​10.1016/​j.jmp.2017.05.006

[116] P. van Loock, W. J. Munro, Kae Nemoto, T. P. Spiller, T. D. Ladd, Samuel L. Braunstein, and G. J. Milburn, “Hybrid quantum computation in quantum optics” Phys. Rev. A 78, 022303 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.022303

Cited by

Could not fetch Crossref cited-by data during last attempt 2023-05-31 14:06:17: Could not fetch cited-by data for 10.22331/q-2023-05-31-1024 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2023-05-31 14:06:18).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?