Generative Data Intelligence

Quantum-Classical Hybrid Systems and their Quasifree Transformations

Date:

Lars Dammeier and Reinhard F. Werner

Institut für Theoretische Physik, Leibniz Universität Hannover, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We study continuous variable systems, in which quantum and classical degrees of freedom are combined and treated on the same footing. Thus all systems, including the inputs or outputs to a channel, may be quantum-classical hybrids. This allows a unified treatment of a large variety of quantum operations involving measurements or dependence on classical parameters. The basic variables are given by canonical operators with scalar commutators. Some variables may commute with all others and hence generate a classical subsystem. We systematically study the class of “quasifree” operations, which are characterized equivalently either by an intertwining condition for phase-space translations or by the requirement that, in the Heisenberg picture, Weyl operators are mapped to multiples of Weyl operators. This includes the well-known Gaussian operations, evolutions with quadratic Hamiltonians, and “linear Bosonic channels”, but allows for much more general kinds of noise. For example, all states are quasifree. We sketch the analysis of quasifree preparation, measurement, repeated observation, cloning, teleportation, dense coding, the setup for the classical limit, and some aspects of irreversible dynamics, together with the precise salient tradeoffs of uncertainty, error, and disturbance. Although the spaces of observables and states are infinite dimensional for every non-trivial system that we consider, we treat the technicalities related to this in a uniform and conclusive way, providing a calculus that is both easy to use and fully rigorous.

► BibTeX data

► References

[1] J. v. Neumann. “Die Eindeutigkeit der Schrödingerschen Operatoren”. Mathematische Annalen 104, 570–578 (1931).
https:/​/​doi.org/​10.1007/​BF01457956

[2] M. Fannes. “Quasi-free states and automorphisms of the CCR-algebra”. Communications in Mathematical Physics 51, 55–66 (1976).
https:/​/​doi.org/​10.1007/​BF01609051

[3] B. Demoen, P. Vanheuverzwijn, and A. Verbeure. “Completely positive quasi-free maps of the CCR-algebra”. Reports on Mathematical Physics 15, 27–39 (1979).
https:/​/​doi.org/​10.1016/​0034-4877(79)90049-1

[4] O. Bratteli and D. W. Robinson. “Operator algebras and quantum statistical mechanics I”. Springer. (1979).
https:/​/​doi.org/​10.1007/​978-3-662-02313-6

[5] R. Haag. “Local quantum physics: fields, particles, algebras”. Springer. (1996).
https:/​/​doi.org/​10.1007/​978-3-642-61458-3

[6] G. G. Emch. “Algebraic methods in statistical mechanics and quantum field theory”. Wiley. (1971).

[7] K. Landsman. “Foundations of quantum theory”. Springer. (2017).
https:/​/​doi.org/​10.1007/​978-3-319-51777-3

[8] N. P. Landsman. “Algebraic quantum mechanics”. In Compendium of Quantum Physics. Pages 6–10. Springer (2009).
https:/​/​doi.org/​10.1007/​978-3-540-70626-7_3

[9] S. Sakai. “A characterization of W*-algebras”. Pacific Journal of Mathematics 6, 763–773 (1956).
https:/​/​doi.org/​10.2140/​pjm.1956.6.763

[10] R. Haag and D. Kastler. “An algebraic approach to quantum field theory”. Journal of Mathematical Physics 5, 848–861 (1964).
https:/​/​doi.org/​10.1063/​1.1704187

[11] G. Ludwig. “An axiomatic basis for quantum mechanics: Volume 1 derivation of Hilbert space structure”. Springer. (1985).
https:/​/​doi.org/​10.1007/​978-3-642-70029-3

[12] G. Ludwig. “An axiomatic basis for quantum mechanics: Volume 2 quantum mechanics and macrosystems”. Springer. (1987).
https:/​/​doi.org/​10.1007/​978-3-642-71897-7

[13] R. F. Werner. “Physical uniformities on the state space of nonrelativistic quantum mechanics”. Foundations of Physics 13, 859–881 (1983).
https:/​/​doi.org/​10.1007/​BF01906273

[14] M. Takesaki. “Theory of operator algebras I”. Springer. (2002).
https:/​/​doi.org/​10.1007/​978-1-4612-6188-9

[15] R. F. Werner. “The concept of embeddings in statistical mechanics” (1982). PhD thesis.

[16] A. Ionescu Ionescu-Tulcea and C. Ionescu-Tulcea. “Topics in the theory of lifting”. Springer. (1969).
https:/​/​doi.org/​10.1007/​978-3-642-88507-5

[17] D. Kastler. “The C*-algebras of a free Boson field”. Communications in Mathematical Physics 1, 14–48 (1965).
https:/​/​doi.org/​10.1007/​BF01649588

[18] H. Araki. “Hamiltonian formalism and the canonical commutation relations in quantum field theory”. Journal of Mathematical Physics 1, 492–504 (1960).
https:/​/​doi.org/​10.1063/​1.1703685

[19] O. Bratteli and D. W. Robinson. “Operator algebras and quantum statistical mechanics II”. Springer. (2$^{mathrm{nd}}$ Ed. 1997).
https:/​/​doi.org/​10.1007/​978-3-662-03444-6

[20] J. Dereziński and C. Gérard. “Mathematics of quantization and quantum fields”. Cambridge University Press. Cambridge (2013).
https:/​/​doi.org/​10.1017/​CBO9780511894541

[21] R. Honegger and A. Rieckers. “Photons in Fock space and beyond, 3 vols.”. World Scientific. (2015).
https:/​/​doi.org/​10.1142/​9251

[22] D. E. Evans and J. T. Lewis. “Dilations of irreversible evolutions in algebraic quantum theory”. Dublin Institute for Advanced Studies. Dublin (1977).

[23] N. J. Cerf, G. Leuchs, and E. S. Polzik. “Quantum information with continous variables of atoms and light”. Imperial College Press. London (2007).
https:/​/​doi.org/​10.1142/​p489

[24] A. S. Holevo. “Quantum systems, channels, information- a mathematical introduction”. de Gruyter. (2012).
https:/​/​doi.org/​10.1515/​9783110273403

[25] J.I. Cirac, J. Eisert, G. Giedke, M.B. Plenio, M. Lewenstein, M.M. Wolf, and R.F. Werner. “MainCarlFriedrich.pdf” (2005). textbook, formerly in preparation, cited in eisert_gaussian_channels_2005.

[26] J. Manuceau, M. Sirugue, D. Testard, and A. Verbeure. “The smallest C*-algebra for canonical commutations relations”. Communications in Mathematical Physics 32, 231–243 (1973).
https:/​/​doi.org/​10.1007/​BF01645594

[27] R. F. Werner. “Quantum harmonic analysis on phase space”. Journal of Mathematical Physics 25 (1984).
https:/​/​doi.org/​10.1063/​1.526310

[28] D. Buchholz. “The resolvent algebra: Ideals and dimension”. Journal of Functional Analysis 266, 3286–3302 (2014). arXiv:1307.6416.
https:/​/​doi.org/​10.1016/​j.jfa.2013.11.004
arXiv:1307.6416

[29] R. Longo. “On Landauer’s principle and bound for infinite systems”. Communications in Mathematical Physics 363, 531 – 560 (2018). arXiv:1710.00910.
https:/​/​doi.org/​10.1007/​s00220-018-3116-x
arXiv:1710.00910

[30] H.-T. Elze. “Quantum-classical hybrid dynamics – a summary”. Journal of Physics: Conference Series 442 (2013). arXiv:1306.4480.
https:/​/​doi.org/​10.1088/​1742-6596/​442/​1/​012007
arXiv:1306.4480

[31] A. Peres and D. R. Terno. “Hybrid classical-quantum dynamics”. Physical Review A 63 (2001). arXiv:quant-ph/​0008068.
https:/​/​doi.org/​10.1103/​PhysRevA.63.022101
arXiv:quant-ph/0008068

[32] D. R. Terno. “Inconsistency of quantum-classical dynamics, and what it implies”. Foundations of Physics 36 (2006). arXiv:quant-ph/​0402092.
https:/​/​doi.org/​10.1007/​s10701-005-9007-y
arXiv:quant-ph/0402092

[33] P. Busch. ““no information without disturbance”: Quantum limitations of measurement”. Pages 229–256. Springer. Dordrecht (2009). arXiv:0706.3526.
https:/​/​doi.org/​10.1007/​978-1-4020-9107-0_13
arXiv:0706.3526

[34] L. Diósi. “Hybrid quantum-classical master equations”. Physica Scripta (2014). arXiv:1401.0476.
https:/​/​doi.org/​10.1088/​0031-8949/​2014/​T163/​014004
arXiv:1401.0476

[35] A. Barchielli and A. M. Paganoni. “A note on a formula of the Lévy-Khinchin type in quantum probability”. Nagoya Mathematical Journal 141, 29–43 (1996).
https:/​/​doi.org/​10.1017/​S0027763000005511

[36] R. Olkiewicz. “Dynamical semigroups for interacting quantum and classical systems”. Journal of Mathematical Physics 40, 1300–1316 (1999).
https:/​/​doi.org/​10.1063/​1.532803

[37] L. Dammeier. “Quantum-classical hybrid systems and their quasifree transformations”. PhD Thesis (in preparation).

[38] T. N. Sherry and E. C. G. Sudarshan. “Interaction between classical and quantum systems: A new approach to quantum measurement.I”. Physical Review D 18 (1978).
https:/​/​doi.org/​10.1103/​PhysRevD.18.4580

[39] L. Diósi, N. Gisin, and W. T. Strunz. “Quantum approach to coupling classical and quantum dynamics”. Physical Review A 61 (2000). arXiv:quant-ph/​9902069.
https:/​/​doi.org/​10.1103/​PhysRevA.61.022108
arXiv:quant-ph/9902069

[40] K. Hepp. “Quantum theory of measurement and macroscopic observables”. Helvetica Physica Acta 45, 237–248 (1972).

[41] P. Bóna. “The dynamics of a class of quantum mean-field theories”. Journal of Mathematical Physics 29, 2223–2235 (1988).
https:/​/​doi.org/​10.1063/​1.528152

[42] N. G. Duffield and R. F. Werner. “Classical Hamiltonian dynamics for quantum Hamiltonian mean-field limits”. In A Truman and I. M. Davies, editors, Stochastics and quantum mechanics (Swansea, 1990). Pages 115–129. World Scientific Publishing (1992).
https:/​/​doi.org/​10.1142/​9789814537452

[43] S. Weinberg. “Testing quantum mechanics”. Annals of Physics 194, 336 – 386 (1989).
https:/​/​doi.org/​10.1016/​0003-4916(89)90276-5

[44] P. Bóna. “Extended quantum mechanics”. Acta Physica Slovaca 50, 1 – 198 (2000). arXiv:math-ph/​9909022.
https:/​/​doi.org/​10.48550/​arXiv.math-ph/​9909022
arXiv:math-ph/9909022

[45] J. Oppenheim. “A post-quantum theory of classical gravity?” (2018) arXiv:1811.03116.
arXiv:1811.03116

[46] J. Oppenheim, C. Sparaciari, B. Šoda, and Z. Weller-Davies. “The two classes of hybrid classical-quantum dynamics” (2022) arXiv:2203.01332.
arXiv:2203.01332

[47] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim, and G. Milburn. “Spin entanglement witness for quantum gravity”. Physical Review Letters 119 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.240401

[48] C. Marletto and V. Vedral. “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity”. Physical Review Letters 119 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.240402

[49] M. J. W. Hall and M. Reginatto. “On two recent proposals for witnessing nonclassical gravity”. Journal of Physics A 51, 085303 (2018). arXiv:1707.07974.
https:/​/​doi.org/​10.1088/​1751-8121/​aaa734
arXiv:1707.07974

[50] K. Schmüdgen. “On the Heisenberg commutation relation II”. Publications of RIMS, Kyoto University 19, 601–671 (1983).
https:/​/​doi.org/​10.2977/​prims/​1195182446

[51] E. Scholz. “Introducing groups into quantum theory (1926-1930)”. Historia Mathematica 33, 440 – 490 (2006). arXiv:math/​0409571.
https:/​/​doi.org/​10.1016/​j.hm.2005.11.007
arXiv:math/0409571

[52] I. E. Segal. “Distributions in Hilbert space and canonical systems of operators”. Transactions of the American Mathematical Society 88, 12–41 (1958).
https:/​/​doi.org/​10.1090/​S0002-9947-1958-0102759-X

[53] A. S. Holevo. “Probabilistic and statistical aspects of quantum theory”. Quaderni Monographs. Edizioni della normale. (2011 (reprint)).
https:/​/​doi.org/​10.1007/​978-88-7642-378-9

[54] G. Loupias and S. Miracle-Sole. “C*-Algèbres des systèmes canoniques. I”. Communications in Mathematical Physics 2, 31–48 (1966).
https:/​/​doi.org/​10.1007/​BF01773339

[55] G. Loupias and S. Miracle-Sole. “C*-Algèbres des systèmes canoniques. II”. Annales de l’I.H.P. Physique théorique 6, 39–58 (1967).

[56] K. R. Parthasarathy. “What is a Gaussian state?”. Communications on Stochastic Analysis 4, 19 (2010).
https:/​/​doi.org/​10.31390/​cosa.4.2.02

[57] G. B. Folland. “A course in abstract harmonic analysis”. CRC Press. (1995).

[58] D. Buchholz and H. Grundling. “The resolvent algebra: A new approach to canonical quantum systems”. Journal of Functional Analysis 254, 2725–2779 (2008). arXiv:0705.1988.
https:/​/​doi.org/​10.1016/​j.jfa.2008.02.011
arXiv:0705.1988

[59] J. Dixmier. “C*-Algebras”. North-Holland. (1977).

[60] C. M. Edwards and J. T. Lewis. “Twisted group algebras, I”. Communications in Mathematical Physics 13, 119–130 (1969).
https:/​/​doi.org/​10.1007/​BF01649871

[61] V. S. Varadarajan. “Geometry of quantum theory”. Springer. (2007).
https:/​/​doi.org/​10.1007/​978-0-387-49386-2

[62] H. Grundling. “A group algebra for inductive limit groups. Continuity problems of the canonical commutation relations”. Acta Applicandae Mathematicae 46, 107–14 (1997).
https:/​/​doi.org/​10.1090/​S0002-9947-1958-0102759-X

[63] H. Grundling and K.-H. Neeb. “Full regularity for a C*-algebra of the canonical commutation relations”. Reviews in Mathematical Physics 21, 587–613 (2009).
https:/​/​doi.org/​10.1142/​S0129055X09003670

[64] I. Bardet. “Quantum extensions of dynamical systems and of Markov semigroups” (2015) arXiv:1509.04849.
arXiv:1509.04849

[65] M. Reed and B. Simon. “Methods of modern mathematical physics: Fourier analysis, self-adjointness”. Academic Press. (2007).

[66] A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description of physical reality be considered complete?”. Physical Review 47, 777–780 (1935).
https:/​/​doi.org/​10.1103/​PhysRev.47.777

[67] D. Bohm. “Quantum theory”. Prentice-Hall. (1951; Dover 1989).

[68] M. Keyl, D. Schlingemann, and R. F. Werner. “Infinitely entangled states”. Quantum Information & Computation 3, 281–306 (2003). arXiv:quant-ph/​0212014.
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​0212014
arXiv:quant-ph/0212014

[69] H. H. Schaefer and M. P. Wolff. “Topological vector spaces”. Springer. (1999).
https:/​/​doi.org/​10.1007/​978-1-4612-1468-7

[70] G. K. Pedersen. “Analysis now”. Springer. (1989).
https:/​/​doi.org/​10.1007/​978-1-4612-1007-8

[71] S. Kaplan. “The bidual of C(X) I”. Number 101 in North-Holland mathematics studies. North-Holland. (1985).

[72] G. K. Pedersen. “Applications of weak* semicontinuity in C*-algebra theory”. Duke Mathematical Journal 39, 431–450 (1972).
https:/​/​doi.org/​10.1215/​S0012-7094-72-03950-6

[73] C. A. Akeman and G. K. Pedersen. “Complications of semicontinuity in C*-algebra theory”. Duke Mathematical Journal 40, 785–795 (1973).
https:/​/​doi.org/​10.1215/​S0012-7094-73-04070-2

[74] L. G. Brown. “Semicontinuity and multipliers of C*-algebras”. Canadian Journal of Mathematics 40, 865–988 (1988).
https:/​/​doi.org/​10.4153/​CJM-1988-038-5

[75] G. K. Pedersen. “Atomic and diffuse functionals on a C*-algebra”. Pacific Journal of Mathematics 37, 795–800 (1971).
https:/​/​doi.org/​10.2140/​pjm.1971.37.795

[76] S. Sakai. “C*-algebras and W*-algebras”. Springer. (1971).
https:/​/​doi.org/​10.1007/​978-3-642-61993-9

[77] D. L. Cohn. “Measure theory”. Springer. (2013).
https:/​/​doi.org/​10.1007/​978-1-4614-6956-8

[78] C. A. Akemann, G. K. Pedersen, and J. Tomiyama. “Multipliers of C*-algebras”. Journal of Functional Analysis 13, 277–301 (1973).
https:/​/​doi.org/​10.1016/​0022-1236(73)90036-0

[79] B. Blackadar. “Operator algebras: theory of C*-algebras and von Neumann algebras”. Springer. (2006).
https:/​/​doi.org/​10.1007/​3-540-28517-2

[80] E. Lukacs. “Characteristic functions”. Griffin. (1970).

[81] D. P. Williams. “Tensor products with bounded continuous functions”. New York Journal of Mathematics 9, 69–77 (2003). arXiv:math/​0307124.
https:/​/​doi.org/​10.48550/​arXiv.math/​0307124
arXiv:math/0307124

[82] G. K. Pedersen. “C*-algebras and their automorphism groups”. L.M.S. monographs. Academic Press. (1979).

[83] D.-X. Xia. “Measure and integration theory on infinite-dimensional spaces: abstract harmonic analysis”. Academic Press. (1972).

[84] C. Rosendal. “Automatic continuity of group homomorphisms”. The Bulletin of Symbolic Logic 15, 184–214 (2009).
https:/​/​doi.org/​10.2178/​bsl/​1243948486

[85] R. Fulsche. “Correspondence theory on p-Fock spaces with applications to Toeplitz algebras”. Journal of Functional Analysis 279, 108661 (2020). arXiv:1911.12668.
https:/​/​doi.org/​10.1016/​j.jfa.2020.108661
arXiv:1911.12668

[86] E. B. Davies. “Diffusion for weakly coupled quantum oscillators”. Communications in Mathematical Physics 27, 309–325 (1972).
https:/​/​doi.org/​10.1007/​BF01645518

[87] H. Araki. “On quasifree states of CAR and Bogoliubov automorphisms”. Publications of RIMS, Kyoto University 6, 385–442 (1970/​71).
https:/​/​doi.org/​10.2977/​PRIMS/​1195193913

[88] T.J. Volkoff. “Linear bosonic quantum channels defined by superpositions of maximally distinguishable gaussian environments”. Quantum Information and Computation 18, 0481 (2018). arXiv:1703.02405.
https:/​/​doi.org/​10.48550/​arXiv.1703.02405
arXiv:1703.02405

[89] M. D Choi. “Completely positive linear maps on complex matrices”. Linear algebra and its applications 10, 285–290 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[90] A. Jamiołkowski. “Linear transformations which preserve trace and positive semidefiniteness of operators”. Reports on Mathematical Physics 3, 275–278 (1972).
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[91] V. Paulsen. “Completely bounded maps and operator algebras”. Cambridge University Press. (2002).
https:/​/​doi.org/​10.1017/​CBO9780511546631

[92] D. Aharonov, A. Kitaev, and N. Nisan. “Quantum circuits with mixed states”. In STOC ’98: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. (1998). arXiv:quant-ph/​9806029.
arXiv:quant-ph/9806029

[93] J. Watrous. “Semidefinite programs for completely bounded norms”. Theory of Computing 5, 217–238 (2009). arXiv:0901.4709.
https:/​/​doi.org/​10.4086/​toc.2009.v005a011
arXiv:0901.4709

[94] D. Reeb and R. F. Werner. “Diamond norm and cb-norm under symmetry” (2015). internal draft.

[95] A. J. Ellis. “On partial orderings of normed spaces”. Mathematica Scandinavica 23, 123–132 (1968).

[96] S. L. Braunstein. “Squeezing as an irreducible resource”. Physical Review A 71, 055801 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.055801

[97] M. M. Wolf, J. Eisert, and M. B. Plenio. “Entangling power of passive optical elements”. Physical Review Letters 90, 047904 (2003). arXiv:quant-ph/​0206171.
https:/​/​doi.org/​10.1103/​PhysRevLett.90.047904
arXiv:quant-ph/0206171

[98] S. Popescu. “Bell’s inequalities versus teleportation: What is nonlocality?”. Physical Review Letters 72, 797–799 (1994).
https:/​/​doi.org/​10.1103/​PhysRevLett.72.797

[99] R. F. Werner, A. S. Holevo, and M. E. Shirokov. “On the concept of entanglement in Hilbert spaces”. Uspekhi Matematicheskikh Nauk 60, 153–154 (2005).
https:/​/​doi.org/​10.1070/​RM2005v060n02ABEH000830

[100] J. Eisert and M. Wolf. “Gaussian quantum channels” (2005) arXiv:quant-ph/​0505151. also in QICV, pp. 23-42.
arXiv:quant-ph/0505151

[101] M. M. Wolf, G. Giedke, and I. J. Cirac. “Extremality of Gaussian quantum states”. Physical Review Letters 96, 080502 (2006). arXiv:quant-ph/​0509154.
https:/​/​doi.org/​10.1103/​PhysRevLett.96.080502
arXiv:quant-ph/0509154

[102] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd. “Gaussian quantum information”. Reviews of Modern Physics 84, 621–669 (2012).
https:/​/​doi.org/​10.1103/​RevModPhys.84.621

[103] R. F. Werner and M. M. Wolf. “Bound entangled gaussian states”. Physical Review Letters 86, 3658–3661 (2001). arXiv:quant-ph/​0009118.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.3658
arXiv:quant-ph/0009118

[104] M. de Gosson. “Symplectic geometry and quantum mechanics”. Birkhäuser. (2006).
https:/​/​doi.org/​10.1007/​3-7643-7575-2

[105] A. Westerbaan and B. Westerbaan. “Paschke dilations”. In Ross Duncan and Chris Heunen, editors, Proceedings 13th International Conference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June 2016. Volume 236 of Electronic Proceedings in Theoretical Computer Science, pages 229–244. Open Publishing Association (2017). arXiv:1603.04353.
https:/​/​doi.org/​10.4204/​EPTCS.236.15
arXiv:1603.04353

[106] J. Manuceau and A. Verbeure. “Quasi-free states of the C.C.R.-algebra and Bogoliubov transformations”. Communications in Mathematical Physics 9, 293–302 (1968).
https:/​/​doi.org/​10.1007/​BF01654283

[107] A. S. Holevo. “Bounds for the quantity of information transmitted by a quantum communication channel”. Problemy Peredachi Informatsii 9, 3–11 (1973).

[108] M. M. Wilde. “Quantum information theory”. Cambridge University Press. (2013).
https:/​/​doi.org/​10.1017/​CBO9781139525343

[109] C. Villani. “Optimal transport: Old and new”. Springer. (2009).
https:/​/​doi.org/​10.1007/​978-3-540-71050-9

[110] E. B. Davies. “Quantum theory of open systems”. Academic Press. (1976).

[111] H. Scutaru. “Some remarks on covariant completely positive linear maps on C*-algebras”. Reports on Mathematical Physics 16, 79–87 (1979).
https:/​/​doi.org/​10.1016/​0034-4877(79)90040-5

[112] U. Cattaneo. “Densities of covariant observables”. Journal of Mathematical Physics 23, 659–664 (1982).
https:/​/​doi.org/​10.1063/​1.525413

[113] R. Werner. “Screen observables in relativistic and nonrelativistic quantum mechanics”. Journal of Mathematical Physics 27, 793–803 (1986).
https:/​/​doi.org/​10.1063/​1.527184

[114] F. E. Schroeck, Jr. “Quantum mechanics on phase space”. Kluwer. (1996).
https:/​/​doi.org/​10.1007/​978-94-017-2830-0

[115] P. Busch, P. Lahti, and R. F. Werner. “Measurement uncertainty relations”. Journal of Mathematical Physics 55, 04211 (2014). arXiv:1312.4392.
https:/​/​doi.org/​10.1063/​1.4871444
arXiv:1312.4392

[116] R. F. Werner. “Uncertainty relations for general phase spaces”. Frontiers of Physics 11, 1–10 (2016). arXiv:1601.03843.
https:/​/​doi.org/​10.1007/​s11467-016-0558-5
arXiv:1601.03843

[117] D. Applebaum. “Lévy processes in euclidean spaces and groups”. Springer Lecture Notes in MathematicsPages 1–98 (2005).
https:/​/​doi.org/​10.1007/​11376569_1

[118] A. Barchielli and R.F. Werner. work in progress.

[119] I. Siemon, A. S. Holevo, and R. F. Werner. “Unbounded generators of dynamical semigroups”. Open Systems and Information Dynamics 24, 1740015 (2017).
https:/​/​doi.org/​10.1142/​S1230161217400157

[120] W. Arveson. “Noncommutative dynamics and E-semigroups”. Springer. (2003).
https:/​/​doi.org/​10.1007/​978-0-387-21524-2

[121] R. F. Werner. “The classical limit of quantum theory” arXiv:quant-ph/​9504016.
arXiv:quant-ph/9504016

[122] G. Lindblad. “Cloning the quantum oscillator”. Journal of Physics A 33, 5059–5076 (2000).
https:/​/​doi.org/​10.1088/​0305-4470/​33/​28/​310

[123] N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf. “Non-gaussian cloning of quantum coherent states is optimal”. Physical Review Letters 95, 070501 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.070501

[124] E. B. Davies and J. T. Lewis. “An operational approach to quantum probability”. Communications in Mathematical Physics 17, 239 – 260 (1970).
https:/​/​doi.org/​10.1007/​BF01647093

[125] E. B. Davies. “On the repeated measurement of continuous observables in quantum mechanics”. Journal of Functional Analysis 6, 318 – 346 (1970).
https:/​/​doi.org/​10.1016/​0022-1236(70)90064-9

[126] A. S. Holevo. “Radon-Nikodym derivatives of quantum instruments”. Journal of Mathematical Physics 39, 1373–1387 (1998).
https:/​/​doi.org/​10.1063/​1.532385

[127] C. Carmeli, T. Heinosaari, and A. Toigo. “Covariant quantum instruments”. Journal of Functional Analysis 257, 3353 – 3374 (2009).
https:/​/​doi.org/​10.1016/​j.jfa.2009.08.013

[128] E. Haapasalo and J.-P. Pellonpää. “Optimal covariant quantum measurements”. Journal of Physics A 54, 155304 (2021).
https:/​/​doi.org/​10.1088/​1751-8121/​abe752

[129] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. Physical Review Letters 70, 1895–1899 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895

[130] C. H. Bennett and S. J. Wiesner. “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states”. Physical Review Letters 69, 2881–2884 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2881

[131] R. F. Werner. “All teleportation and dense coding schemes”. Journal of Physics. A. Mathematical and General 34, 7081–7094 (2001). arXiv:quant-ph/​0003070.
https:/​/​doi.org/​10.1088/​0305-4470/​34/​35/​332
arXiv:quant-ph/0003070

[132] S. Pirandola and S. Mancini. “Quantum teleportation with continuous variables: A survey”. Laser Physics 16, 1418 – 1438 (2006). arXiv:quant-ph/​0604027.
https:/​/​doi.org/​10.1134/​S1054660X06100057
arXiv:quant-ph/0604027

[133] A. S. Holevo. “Extreme Bosonic linear channels”. Theoretical and Mathematical Physics 174, 288–297 (2013). arXiv:1111.3552.
https:/​/​doi.org/​10.1007/​s11232-013-0026-0
arXiv:1111.3552

[134] J. Lammers, H. Weimer, and K. Hammerer. “Open-system many-body dynamics through interferometric measurements and feedback”. Physical Review A 94, 052120 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.052120

[135] C. J. Fewster and R. Verch. “Quantum fields and local measurements”. Communications in Mathematical Physics 378, 851–889 (2020). arXiv:1810.06512.
https:/​/​doi.org/​10.1007/​s00220-020-03800-6
arXiv:1810.06512

[136] I. Jubb. “Causal state updates in real scalar quantum field theory”. Physical Review D 105, 025003 (2022). arXiv:2106.09027.
https:/​/​doi.org/​10.1103/​PhysRevD.105.025003
arXiv:2106.09027

[137] M. Hellmich. “Quasi-free semigroups on the CCR algebra”. Reports on Mathematical Physics 66, 277 – 298 (2010).
https:/​/​doi.org/​10.1016/​S0034-4877(10)80031-X

[138] P. Blanchard, M. Hellmich, P. Ługiewicz, and R. Olkiewicz. “Continuity and generators of dynamical semigroups for infinite Bose systems”. Journal of Functional Analysis 256, 1453–1475 (2009).
https:/​/​doi.org/​10.1016/​j.jfa.2008.05.013

[139] V. Giovannetti, A. S. Holevo, and García-Patrón. “A solution of Gaussian optimizer conjecture for quantum channels”. Communications in Mathematical Physics 334, 1553–1571 (2015).
https:/​/​doi.org/​10.1007/​s00220-014-2150-6

[140] A. S. Holevo and S. N. Filippov. “Proof of the Gaussian maximizers conjecture for the communication capacity of noisy heterodyne measurements” (2022) arXiv:2206.02133.
https:/​/​doi.org/​10.1007/​s11005-023-01634-6
arXiv:2206.02133

[141] W. L. Paschke. “Inner product modules over $B^*$-algebras”. Transactions of the American Mathematical Socciety 182, 443–468 (1973).
https:/​/​doi.org/​10.1090/​S0002-9947-1973-0355613-0

Cited by

[1] Alberto Barchielli and Reinhard Werner, “Hybrid quantum-classical systems: Quasi-free Markovian dynamics”, arXiv:2307.02611, (2023).

[2] Lauritz van Luijk, René Schwonnek, Alexander Stottmeister, and Reinhard F. Werner, “The Schmidt rank for the commuting operator framework”, arXiv:2307.11619, (2023).

[3] Lauritz van Luijk, Alexander Stottmeister, and Reinhard F. Werner, “Convergence of Dynamics on Inductive Systems of Banach Spaces”, arXiv:2306.16063, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-07-26 10:30:51). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-07-26 10:30:50: Could not fetch cited-by data for 10.22331/q-2023-07-26-1068 from Crossref. This is normal if the DOI was registered recently.

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?