Generative Data Intelligence

Quantitative relations between different measurement contexts

Date:

Ming Ji and Holger F. Hofmann

Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi Hiroshima 739-8530, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In quantum theory, a measurement context is defined by an orthogonal basis in a Hilbert space, where each basis vector represents a specific measurement outcome. The precise quantitative relation between two different measurement contexts can thus be characterized by the inner products of nonorthogonal states in that Hilbert space. Here, we use measurement outcomes that are shared by different contexts to derive specific quantitative relations between the inner products of the Hilbert space vectors that represent the different contexts. It is shown that the probabilities that describe the paradoxes of quantum contextuality can be derived from a very small number of inner products, revealing details of the fundamental relations between measurement contexts that go beyond a basic violation of noncontextual limits. The application of our analysis to a product space of two systems reveals that the nonlocality of quantum entanglement can be traced back to a local inner product representing the relation between measurement contexts in only one system. Our results thus indicate that the essential nonclassical features of quantum mechanics can be traced back to the fundamental difference between quantum superpositions and classical alternatives.

Quantum contextuality proves that quantum systems cannot be described by a measurement independent reality. However, it is still quite a mystery how the quantum formalism can replace the conventional notion of reality with fundamental relations that do not require any pre-determined reality of observable physical properties. Here, we investigate how quantum superpositions define the relations between different measurement contexts and derive precise quantitative relations that directly contradict the identification of quantum state components with unobserved realities.

The quantitative relations between different measurement contexts are given by the inner products of the Hilbert space vectors that describe the measurement outcomes of each context. Usually, these inner products define measurement probabilities relating state preparation to measurement outcomes. By applying these relations to multiple contexts, we show that the inner products introduce precise quantitative relations between the measurement outcomes of different contexts, necessarily resulting in the paradoxical relations that are widely seen as proofs of quantum contextuality. This result also applies to quantum non-locality, where we can derive the probability of observing Hardy’s paradox based on the inner product of two state vectors representing the outcomes of incompatible local measurements.

Our analysis demonstrates that both contextuality and quantum non-locality can be explained in terms of the fundamental quantitative relations between different measurement contexts described by the inner products between state vectors representing the outcomes of these measurement contexts. Moreover, it provides a unified approach providing precise quantitative relations between measurement outcomes of incompatible measurements. Our new approach may thus hold the key to a deeper understanding of the nature of reality at the quantum level.

â–º BibTeX data

â–º References

[1] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195, 1964. doi:10.1103/​PhysicsPhysiqueFizika.1.195.
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[2] S. Kochen and E. P. Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17:59–87, 1967. doi:10.1007/​978-3-0348-9259-9_21.
https:/​/​doi.org/​10.1007/​978-3-0348-9259-9_21

[3] A. Cabello. Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett., 101:210401, Nov 2008. doi:10.1103/​PhysRevLett.101.210401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.210401

[4] Piotr Badzia̧g, Ingemar Bengtsson, Adán Cabello, and Itamar Pitowsky. Universality of state-independent violation of correlation inequalities for noncontextual theories. Phys. Rev. Lett., 103:050401, Jul 2009. doi:10.1103/​PhysRevLett.103.050401.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.050401

[5] M. Kleinmann, C. Budroni, J. Larsson, O. Gühne, and A. Cabello. Optimal inequalities for state-independent contextuality. Phys. Rev. Lett., 109:250402, Dec 2012. doi:10.1103/​PhysRevLett.109.250402.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.250402

[6] A. K. Pan, M. Sumanth, and P. K. Panigrahi. Quantum violation of entropic noncontextual inequality in four dimensions. Phys. Rev. A, 87:014104, Jan 2013. doi:10.1103/​PhysRevA.87.014104.
https:/​/​doi.org/​10.1103/​PhysRevA.87.014104

[7] H.-Y. Su, J.-L. Chen, and Y.-C. Liang. Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities. Scientific Reports, 5(1):11637, Jun 2015. doi:10.1038/​srep11637.
https:/​/​doi.org/​10.1038/​srep11637

[8] R. Kunjwal and R. W. Spekkens. From the kochen-specker theorem to noncontextuality inequalities without assuming determinism. Phys. Rev. Lett., 115:110403, Sep 2015. doi:10.1103/​PhysRevLett.115.110403.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.110403

[9] Z.-P. Xu, D. Saha, H.-Y. Su, M. Pawłowski, and J.-L. Chen. Reformulating noncontextuality inequalities in an operational approach. Phys. Rev. A, 94:062103, Dec 2016. doi:10.1103/​PhysRevA.94.062103.
https:/​/​doi.org/​10.1103/​PhysRevA.94.062103

[10] A. Krishna, R. W. Spekkens, and E. Wolfe. Deriving robust noncontextuality inequalities from algebraic proofs of the kochen–specker theorem: the peres–mermin square. New Journal of Physics, 19(12):123031, dec 2017. doi:10.1088/​1367-2630/​aa9168.
https:/​/​doi.org/​10.1088/​1367-2630/​aa9168

[11] R. Kunjwal and R. W. Spekkens. From statistical proofs of the kochen-specker theorem to noise-robust noncontextuality inequalities. Phys. Rev. A, 97:052110, May 2018. doi:10.1103/​PhysRevA.97.052110.
https:/​/​doi.org/​10.1103/​PhysRevA.97.052110

[12] D. Schmid, R. W. Spekkens, and E. Wolfe. All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed set of operational equivalences. Phys. Rev. A, 97:062103, Jun 2018. doi:10.1103/​PhysRevA.97.062103.
https:/​/​doi.org/​10.1103/​PhysRevA.97.062103

[13] M. Leifer and C. Duarte. Noncontextuality inequalities from antidistinguishability. Phys. Rev. A, 101:062113, Jun 2020. doi:10.1103/​PhysRevA.101.062113.
https:/​/​doi.org/​10.1103/​PhysRevA.101.062113

[14] J. S. Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447–452, Jul 1966. URL: https:/​/​doi.org/​10.1103/​RevModPhys.38.447, doi:10.1103/​RevModPhys.38.447.
https:/​/​doi.org/​10.1103/​RevModPhys.38.447

[15] L. Hardy. Quantum mechanics, local realistic theories, and lorentz-invariant realistic theories. Phys. Rev. Lett., 68:2981–2984, May 1992. doi:10.1103/​PhysRevLett.68.2981.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.2981

[16] L. Hardy. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett., 71:1665–1668, Sep 1993. doi:10.1103/​PhysRevLett.71.1665.
https:/​/​doi.org/​10.1103/​PhysRevLett.71.1665

[17] D. Boschi, S. Branca, F. De Martini, and L. Hardy. Ladder proof of nonlocality without inequalities: Theoretical and experimental results. Phys. Rev. Lett., 79:2755–2758, Oct 1997. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.79.2755, doi:10.1103/​PhysRevLett.79.2755.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.2755

[18] M. Genovese. Research on hidden variable theories: A review of recent progresses. Physics Reports, 413(6):319–396, 2005. doi:10.1016/​j.physrep.2005.03.003.
https:/​/​doi.org/​10.1016/​j.physrep.2005.03.003

[19] F. De Zela. Single-qubit tests of bell-like inequalities. Phys. Rev. A, 76:042119, Oct 2007. URL: https:/​/​doi.org/​10.1103/​PhysRevA.76.042119, doi:10.1103/​PhysRevA.76.042119.
https:/​/​doi.org/​10.1103/​PhysRevA.76.042119

[20] A. Carmi and E. Cohen. On the significance of the quantum mechanical covariance matrix. Entropy, 20(7), 2018. URL: https:/​/​www.mdpi.com/​1099-4300/​20/​7/​500, doi:10.3390/​e20070500.
https:/​/​doi.org/​10.3390/​e20070500
https:/​/​www.mdpi.com/​1099-4300/​20/​7/​500

[21] T. Temistocles, R. Rabelo, and M. T. Cunha. Measurement compatibility in bell nonlocality tests. Phys. Rev. A, 99:042120, Apr 2019. URL: https:/​/​doi.org/​10.1103/​PhysRevA.99.042120, doi:10.1103/​PhysRevA.99.042120.
https:/​/​doi.org/​10.1103/​PhysRevA.99.042120

[22] A. Cabello, P. Badzia̧g, M. Terra Cunha, and M. Bourennane. Simple hardy-like proof of quantum contextuality. Phys. Rev. Lett., 111:180404, Oct 2013. doi:10.1103/​PhysRevLett.111.180404.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.180404

[23] M. Ji and H. F. Hofmann. Characterization of the nonclassical relation between measurement outcomes represented by nonorthogonal quantum states. Phys. Rev. A, 107:022208, Feb 2023. doi:10.1103/​PhysRevA.107.022208.
https:/​/​doi.org/​10.1103/​PhysRevA.107.022208

[24] C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J. Larsson. Kochen-specker contextuality. Rev. Mod. Phys., 94:045007, Dec 2022. doi:10.1103/​RevModPhys.94.045007.
https:/​/​doi.org/​10.1103/​RevModPhys.94.045007

[25] M. S. Leifer and R. W. Spekkens. Pre- and post-selection paradoxes and contextuality in quantum mechanics. Phys. Rev. Lett., 95:200405, Nov 2005. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.95.200405, doi:10.1103/​PhysRevLett.95.200405.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.200405

[26] A. Cabello. Proposal for revealing quantum nonlocality via local contextuality. Phys. Rev. Lett., 104:220401, Jun 2010. doi:10.1103/​PhysRevLett.104.220401.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.220401

[27] B.-H. Liu, X.-M. Hu, J.-S. Chen, Y.-F. Huang, Y.-J. Han, C.-F. Li, G.-C. Guo, and A. Cabello. Nonlocality from local contextuality. Phys. Rev. Lett., 117:220402, Nov 2016. doi:10.1103/​PhysRevLett.117.220402.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.220402

[28] D. Frauchiger and R. Renner. Quantum theory cannot consistently describe the use of itself. Nature Communications, 9(1):3711, Sep 2018. doi:10.1038/​s41467-018-05739-8.
https:/​/​doi.org/​10.1038/​s41467-018-05739-8

[29] M. Kupczynski. Contextuality or nonlocality: What would john bell choose today? Entropy, 25(2):280, February 2023. URL: http:/​/​dx.doi.org/​10.3390/​e25020280, doi:10.3390/​e25020280.
https:/​/​doi.org/​10.3390/​e25020280

Cited by

[1] Kengo Matsuyama, Ming Ji, Holger F. Hofmann, and Masataka Iinuma, “Quantum contextuality of complementary photon polarizations explored by adaptive input state control”, Physical Review A 108 6, 062213 (2023).

[2] Holger F. Hofmann, “Sequential propagation of a single photon through five measurement contexts in a three-path interferometer”, arXiv:2308.02086, (2023).

[3] Ming Ji, Jonte R. Hance, and Holger F. Hofmann, “Tracing quantum correlations back to collective interferences”, arXiv:2401.16769, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-02-14 11:29:27). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-02-14 11:29:25: Could not fetch cited-by data for 10.22331/q-2024-02-14-1255 from Crossref. This is normal if the DOI was registered recently.

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?