Generative Data Intelligence

Magic State Distillation: Not as Costly as You Think

Date:


Daniel Litinski

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Despite significant overhead reductions since its first proposal, magic state distillation is often considered to be a very costly procedure that dominates the resource cost of fault-tolerant quantum computers. The goal of this work is to demonstrate that this is not true. By writing distillation circuits in a form that separates qubits that are capable of error detection from those that are not, most logical qubits used for distillation can be encoded at a very low code distance. This significantly reduces the space-time cost of distillation, as well as the number of qubits. In extreme cases, it can cost less to distill a magic state than to perform a logical Clifford gate on full-distance logical qubits.

► BibTeX data

► References

[1] J. Preskill, Reliable quantum computers, Proc. Roy. Soc. Lond. A 454, 385 (1998).
https:/​/​doi.org/​10.1098/​rspa.1998.0167

[2] B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.307

[3] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
https:/​/​doi.org/​10.1038/​nature23460

[4] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[5] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324

[6] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface code quantum computing by lattice surgery, New J. Phys. 14, 123011 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​12/​123011

[7] D. Litinski and F. v. Oppen, Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes, Quantum 2, 62 (2018).
https:/​/​doi.org/​10.22331/​q-2018-05-04-62

[8] A. G. Fowler and C. Gidney, Low overhead quantum computation using lattice surgery, arXiv:1808.06709 (2018).
arXiv:1808.06709

[9] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.022316

[10] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven, Encoding electronic spectra in quantum circuits with linear T complexity, Phys. Rev. X 8, 041015 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.041015

[11] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Phys. Rev. A 86, 052329 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329

[12] A. G. Fowler, S. J. Devitt, and C. Jones, Surface code implementation of block code state distillation, Scientific Rep. 3, 1939 (2013).
https:/​/​doi.org/​10.1038/​srep01939

[13] A. M. Meier, B. Eastin, and E. Knill, Magic-state distillation with the four-qubit code, Quant. Inf. Comp. 13, 195 (2013).
arXiv:1204.4221

[14] C. Jones, Multilevel distillation of magic states for quantum computing, Phys. Rev. A 87, 042305 (2013a).
https:/​/​doi.org/​10.1103/​PhysRevA.87.042305

[15] G. Duclos-Cianci and K. M. Svore, Distillation of nonstabilizer states for universal quantum computation, Phys. Rev. A 88, 042325 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.042325

[16] G. Duclos-Cianci and D. Poulin, Reducing the quantum-computing overhead with complex gate distillation, Phys. Rev. A 91, 042315 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.042315

[17] E. T. Campbell and M. Howard, Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost, Phys. Rev. A 95, 022316 (2017a).
https:/​/​doi.org/​10.1103/​PhysRevA.95.022316

[18] J. O’Gorman and E. T. Campbell, Quantum computation with realistic magic-state factories, Phys. Rev. A 95, 032338 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.032338

[19] J. Haah and M. B. Hastings, Codes and Protocols for Distilling $T$, controlled-$S$, and Toffoli Gates, Quantum 2, 71 (2018).
https:/​/​doi.org/​10.22331/​q-2018-06-07-71

[20] E. T. Campbell and M. Howard, Magic state parity-checker with pre-distilled components, Quantum 2, 56 (2018).
https:/​/​doi.org/​10.22331/​q-2018-03-14-56

[21] C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed $|CCZrangle$ to $2|Trangle$ transformation, Quantum 3, 135 (2019).
https:/​/​doi.org/​10.22331/​q-2019-04-30-135

[22] C. Jones, P. Brooks, and J. Harrington, Gauge color codes in two dimensions, Phys. Rev. A 93, 052332 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.052332

[23] S. Bravyi and A. Cross, Doubled color codes, arXiv:1509.03239 (2015).
arXiv:1509.03239

[24] T. Jochym-O’Connor and S. D. Bartlett, Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout, Phys. Rev. A 93, 022323 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.022323

[25] H. Bombin, 2D quantum computation with 3D topological codes, arXiv:1810.09571 (2018).
arXiv:1810.09571

[26] C. Chamberland and A. W. Cross, Fault-tolerant magic state preparation with flag qubits, Quantum 3, 143 (2019).
https:/​/​doi.org/​10.22331/​q-2019-05-20-143

[27] B. J. Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions, arXiv:1903.11634 (2019).
arXiv:1903.11634

[28] D. Litinski, A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery, Quantum 3, 128 (2019).
https:/​/​doi.org/​10.22331/​q-2019-03-05-128

[29] M. Amy and M. Mosca, T-count optimization and Reed-Muller codes, IEEE Transactions on Information Theory , 1 (2019).
https:/​/​doi.org/​10.1109/​TIT.2019.2906374

[30] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic state distillation with low space overhead and optimal asymptotic input count, Quantum 1, 31 (2017).
https:/​/​doi.org/​10.22331/​q-2017-10-03-31

[31] A. J. Landahl and C. Ryan-Anderson, Quantum computing by color-code lattice surgery, arXiv:1407.5103 (2014).
arXiv:1407.5103

[32] Y. Li, A magic state’s fidelity can be superior to the operations that created it, New J. Phys. 17, 023037 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​2/​023037

[33] J. Lodyga, P. Mazurek, A. Grudka, and M. Horodecki, Simple scheme for encoding and decoding a qubit in unknown state for various topological codes, Scientific Rep. 5, 8975 (2015).
https:/​/​doi.org/​10.1038/​srep08975

[34] L. Lao et al., Preparing high-fidelity magic states with low costs, in preparation.

[35] Cramming more power into a quantum device, https:/​/​www.ibm.com/​blogs/​research/​2019/​03/​ power-quantum-device/​, accessed: 2019-05-09.
https:/​/​www.ibm.com/​blogs/​research/​2019/​03/​power-quantum-device/​

[36] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. Pisenti, M. Chmielewski, C. Collins, et al., Benchmarking an 11-qubit quantum computer, arXiv:1903.08181 (2019).
arXiv:1903.08181

[37] The Python script and Mathematica notebook can be found on GitHub, see https:/​/​github.com/​litinski/​magicstates.
https:/​/​github.com/​litinski/​magicstates

[38] E. T. Campbell and M. Howard, Unifying gate synthesis and magic state distillation, Phys. Rev. Lett. 118, 060501 (2017b).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.060501

[39] P. Selinger, Quantum circuits of $T$-depth one, Phys. Rev. A 87, 042302 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.042302

[40] C. Jones, Low-overhead constructions for the fault-tolerant Toffoli gate, Phys. Rev. A 87, 022328 (2013b).
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328

[41] C. Gidney, Halving the cost of quantum addition, Quantum 2, 74 (2018).
https:/​/​doi.org/​10.22331/​q-2018-06-18-74

[42] B. J. Brown and S. Roberts, Universal fault-tolerant measurement-based quantum computation, arXiv:1811.11780 (2018).
arXiv:1811.11780

Cited by

[1] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, “Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization”, arXiv:1902.02134.

[2] Craig Gidney and Martin Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”, arXiv:1905.09749.

[3] Y. Herasymenko and T. E. O’Brien, “A diagrammatic approach to variational quantum ansatz construction”, arXiv:1907.08157.

[4] Ryuji Takagi and Hiroyasu Tajima, “Universal limitations on implementing resourceful unitary evolutions”, arXiv:1909.01336.

The above citations are from SAO/NASA ADS (last updated successfully 2020-01-22 18:18:12). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2020-01-22 18:18:09).

Source: https://quantum-journal.org/papers/q-2019-12-02-205/

spot_img

Latest Intelligence

spot_img