Generative Data Intelligence

How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. I. Spin and the Kraus-operator geometry of $mathrm{SL}(2,mathbb{C})$

Date:

Christopher S. Jackson1,2 and Carlton M. Caves2

1Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Livermore, CA 94550, USA
2Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The generalized $Q$-function of a spin system can be considered the outcome probability distribution of a state subjected to a measurement represented by the spin-coherent-state (SCS) positive-operator-valued measure (POVM). As fundamental as the SCS POVM is to the 2-sphere phase-space representation of spin systems, it has only recently been reported that the SCS POVM can be performed for any spin system by continuous isotropic measurement of the three total spin components [E. Shojaee, C. S. Jackson, C. A. Riofrio, A. Kalev, and I. H. Deutsch, Phys. Rev. Lett. 121, 130404 (2018)]. This article develops the theoretical details of the continuous isotropic measurement and places it within the general context of curved-phase-space correspondences for quantum systems. The analysis is in terms of the Kraus operators that develop over the course of a continuous isotropic measurement. The Kraus operators of any spin $j$ are shown to represent elements of the Lie group $mathrm{SL}(2,{mathbb C})congmathrm{Spin}(3,{mathbb C})$, a complex version of the usual unitary operators that represent elements of $mathrm{SU}(2)congmathrm{Spin}(3,{mathbb R})$. Consequently, the associated POVM elements represent points in the symmetric space $mathrm{SU}(2)backslashmathrm{SL}(2,{mathbb C})$, which can be recognized as the 3-hyperboloid. Three equivalent stochastic techniques, (Wiener) path integral, (Fokker-Planck) diffusion equation, and stochastic differential equations, are applied to show that the continuous isotropic POVM quickly limits to the SCS POVM, placing spherical phase space at the boundary of the fundamental Lie group $mathrm{SL}(2,{mathbb C})$ in an operationally meaningful way. Two basic mathematical tools are used to analyze the evolving Kraus operators, the Maurer-Cartan form, modified for stochastic applications, and the Cartan, decomposition associated with the symmetric pair $mathrm{SU}(2)$ ⊂ $mathrm{SL}(2,{mathbb C})$. Informed by these tools, the three schochastic techniques are applied directly to the Kraus operators in a representation-independent – and therefore geometric – way (independent of any spectral information about the spin components).
The Kraus-operator-centric, geometric treatment applies not just to $mathrm{SU}(2)$ ⊂ $mathrm{SL}(2,{mathbb C})$, but also to any compact semisimple Lie group and its complexification. The POVM associated with the continuous isotropic measurement of Lie-group generators thus corresponds to a type-IV globally Riemannian symmetric space and limits to the POVM of generalized coherent states. This generalization is the focus of a sequel to this article.

â–º BibTeX data

â–º References

[1] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Physical Review 131, 2766–-2788 (1963).
https:/​/​doi.org/​10.1103/​PhysRev.131.2766

[2] R. J. Glauber, “Photon correlations,” Physical Review Letters 10, 84-–86 (1963).
https:/​/​doi.org/​10.1103/​PhysRevLett.10.84

[3] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Physical Review Letters 10, 277–-279 (1963).
https:/​/​doi.org/​10.1103/​PhysRevLett.10.277

[4] A. Perelomov, Generalized Coherent States and Their Applications (Springer, 1986).

[5] W.-M. Zhang, D. H. Fang, and R. Gilmore, “Coherent states: Theory and some applications,” Reviews of Modern Physics 62, 867-–927 (1990).
https:/​/​doi.org/​10.1103/​RevModPhys.62.867

[6] R. D. Somma, “Unitary circuit synthesis for tomography of generalized coherent states,” Journal of Mathematical Physics 60, 112202 (2019).
https:/​/​doi.org/​10.1063/​1.5121549

[7] S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Physical Review Letters 74, 1259–-1263 (1995).
https:/​/​doi.org/​10.1103/​PhysRevLett.74.1259

[8] A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Vol. 140 (Springer, 2013).

[9] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics, Vol. 98 (Springer, 2013).

[10] J.-P. Gazeau, Coherent States in Quantum Physics (Wiley, 2009).

[11] P. A. M. Dirac, “Generalized Hamiltonian dynamics,” Canadian Journal of Mathematics 2, 129–-148 (1950).
https:/​/​doi.org/​10.4153/​CJM-1950-012-1

[12] A. Berezin, “General concept of quantization,” Communications in Mathematical Physics 40, 153–-174 (1975).
https:/​/​doi.org/​10.1007/​BF01609397

[13] D. Gross, “Non-negative Wigner functions in prime dimensions,” Applied Physics B 86, 367–-370 (2007).
https:/​/​doi.org/​10.1007/​s00340-006-2510-9

[14] L. Kocia and P. Love, “Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states,” Physical Review A 96, 062134 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.96.062134

[15] U. Fano, “Geometrical characterization of nuclear states and the theory of angular correlations,” Physical Review 90, 577–-579 (1953).
https:/​/​doi.org/​10.1103/​PhysRev.90.577

[16] C. Brif and A. Mann, “Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries,” Physical Review A 59, 971–-987 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.59.971

[17] S. D. Bartlett, D. J. Rowe, and J. Repka, “Vector coherent state representations, induced representations and geometric quantization: I. Scalar coherent state representations,” Journal of Physics A: Mathematical and General 35, 5599–5623 (2002).
https:/​/​doi.org/​10.1088/​0305-4470/​35/​27/​306

[18] C. Ferrie, “Quasi-probability representations of quantum theory with applications to quantum information science,” Reports on Progress in Physics 74, 116001 (2011).
https:/​/​doi.org/​10.1088/​0034-4885/​74/​11/​116001

[19] C. S. Jackson and C. M. Caves, “How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. II. Compact connected Lie groups and the Kraus-operator geometry of their complexifications,” in preparation (2023).

[20] E. Shojaee, C. S. Jackson, C. A. Riofrío, A. Kalev, and I. H. Deutsch, “Optimal pure-state qubit tomography via sequential weak measurements”, Physical Review Letters 121, 130404 (2018). 10.1103/​PhysRevLett.121.130404.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.130404

[21] E. Shojaee, Measurement and Control for Quantum State Tomography, State Preparation, and Metrology, Ph.D. thesis, University of New Mexico (2019).

[22] J. Dressel and A. N. Jordan, “Quantum instruments as a foundation for both states and observables,” Physical Review A 88, 022107 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.022107

[23] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics, Vol. 190, edited by A. Böhm, J. D. Dollard, and W. H. Wootters (Springer, 1983).

[24] S. T. Ali and M. EngliÅ¡, “Quantization methods: A guide for physicists and analysts,” Reviews in Mathematical Physics 17, 391–-490 (2005).
https:/​/​doi.org/​10.1142/​S0129055X05002376

[25] R. Derka, V. Bužek, and A. K. Ekert, “Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement,” Physical Review Letters 80, 1571-–1575 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.80.1571

[26] J. I. Latorre, P. Pascual, and R. Tarrach, “Minimal optimal generalized quantum measurements,” Physical Review Letters 81, 1351–-1354 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.1351

[27] D. Bruß and C. Macchiavello, “Optimal state estimation for $d$-dimensional quantum systems,” Physics Letters A 253, 249–-251 (1999).
https:/​/​doi.org/​10.1016/​S0375-9601(99)00099-7

[28] A. Acín, J. I. Latorre, and P. Pascual, “Optimal generalized quantum measurements for arbitrary spin systems,” Physical Review A 61, 022113 (2000).
https:/​/​doi.org/​10.1103/​PhysRevA.61.022113

[29] A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, 2006).

[30] G. M. D’Ariano, C. Macchiavello, and M. F. Sacchi, “Joint measurements via quantum cloning,” Journal of Optics B: Quantum and Semiclassical Optics 3, 44–-50 (2001).
https:/​/​doi.org/​10.1088/​1464-4266/​3/​2/​305

[31] G. M. D’Ariano, P. Lo Presti, and M. F. Sacchi, “A quantum measurement of the spin direction,” Physics Letters A bf 292, 233–-237 (2002).
https:/​/​doi.org/​10.1016/​S0375-9601(01)00809-X

[32] H. Wei and Y. V. Nazarov, “Statistics of measurement of noncommuting quantum variables: Monitoring and purification of a qubit,” Physical Review B 78, 045308 (2008).
https:/​/​doi.org/​10.1103/​PhysRevB.78.045308

[33] R. Ruskov, A. N. Korotkov, and K. Mølmer, “Qubit state monitoring by three complementary observables,” Physical Review Letters 105, 100506 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.100506

[34] R. Ruskov, J. Combes, K. Mølmer, and H. M. Wiseman, “Qubit purification speed-up for three complementary continuous measurements,” Philosophical Transactions of the Royal Society A 370, 5291–5307 (2012).
https:/​/​doi.org/​10.1098/​rsta.2011.0516

[35] A. Borel, Essays in the History of Lie Groups and Algebraic Groups (American Mathematical Society, 2001).

[36] M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, 1966).

[37] T. Hawkins, Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics 1869–1926 (Springer, 2000).

[38] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty, “Quantum computation as geometry,” Science 311, 1133–-1135 (2006).
https:/​/​doi.org/​10.1126/​science.1121541

[39] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods (Birkhäuser, 2009).

[40] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).

[41] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd ed., Springer Series in Synergetics (Springer, 1985).

[42] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, “A subsystem-independent generalization of entanglement,” Physical Review Letters 92, 107902 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.92.107902

[43] W. Fulton and J. Harris, Representation Theory: A First Course, Readings in Mathematics, Vol. 129 (Springer, 2004).

[44] C. S. Jackson and C. M. Caves, “Simultaneous measurements of noncommuting observables. Positive transformations and instrumental Lie groups,” submitted to Entropy, arXiv:2306.06167 [quant-ph].
arXiv:2306.06167

[45] C. S. Jackson and C. M. Caves, “Simultaneous position and momentum measurement and the instrumental Weyl-Heisenberg group,” Entropy, to be published arXiv:2306.01045 [quant-ph].
arXiv:2306.01045

[46] H. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics: Monograph (Springer, 1993).

[47] T. A. Brun, “A simple model of quantum trajectories,” American Journal of Physics 70, 719–-737 (2002).
https:/​/​doi.org/​10.1119/​1.1475328

[48] A. Silberfarb, P. S. Jessen, and I. H. Deutsch, “Quantum state reconstruction via continuous measurement,” Physical Review Letters 95, 030402 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.030402

[49] K. Jacobs and D. A. Steck, “A straightforward introduction to continuous quantum measurement,” Contemporary Physics 47, 279-–303 (2006).
https:/​/​doi.org/​10.1080/​00107510601101934

[50] P. Warszawski, H. M. Wiseman, and A. C. Doherty, “Solving quantum trajectories for systems with linear Heisenberg-picture dynamics and Gaussian measurement noise,” Physical Review A 102, 042210 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.102.042210

[51] E. Cartan, Riemannian Geometry in an Orthogonal Frame, from lectures delivered by Elie Cartan at the Sorbonne in 1926-–27, translated from Russian by V. V. Goldberg (World Scientific, 2001).

[52] T. Frankel, The Geometry of Physics: An Introduction, 3rd ed. (Cambridge University Press, 2012).

[53] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications (Birkhäuser, 2012).

[54] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[55] C. M. Caves, “Quantum error correction and reversible operations,” Journal of Superconductivity 12, 707-–718 (1999).
https:/​/​doi.org/​10.1023/​A:1007720606911

[56] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions,” Physical Review A 64, 042315 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.042315

[57] N. C. Menicucci, Superoperator Representation of Higher Dimensional Bloch Space Transformations, PhD Advanced Project, Princeton University, 2005.

[58] S. Helgason, Differential Geometry and Symmetric Spaces (American Mathematical Society, 2000).

[59] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Company, 1973).

[60] W. Feller, “On the theory of stochastic processes, with particular reference to applications,” in Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, 1949) pp. 403–-432.
https:/​/​projecteuclid.org/​euclid.bsmsp/​1166219215

[61] M. C. Wang and G. E. Uhlenbeck, “On the theory of Brownian motion II,” Reviews of Modern Physics 17, 323–-342 (1945).
https:/​/​doi.org/​10.1103/​RevModPhys.17.323

[62] M. Kac, “On distributions of certain Wiener functionals,” Transactions of the American Mathematical Society 65, 1-–13 (1949).
https:/​/​doi.org/​10.2307/​1990512

[63] K. Itô, “Stochastic differential equations in a differentiable manifold,” Nagoya Mathematical Journal 1, 35-–47 (1950).
https:/​/​doi.org/​10.1017/​S0027763000022819

[64] K. Itô and H. P. McKean, Jr., Diffusion Processes and their Sample Paths, Reprint of the 1974 Edition, originally published as Vol. 125 of the Grundlehren der mathematischen Wissensschaften (Springer, 1996).

[65] H. Weyl, The Classical Groups: Their Invariants and Representations (Princeton University Press, 1939).

[66] A. O. Barut and R. Racszka, Theory of Group Representations and Applications (World Scientific, 1986).

[67] H. Barnum and A. Wilce, “Local tomography and the Jordan structure of quantum theory,” Foundations of Physics 44, 192–212 (2014).
https:/​/​doi.org/​10.1007/​s10701-014-9777-1

Cited by

[1] Tathagata Karmakar, Philippe Lewalle, and Andrew N. Jordan, “Stochastic Path-Integral Analysis of the Continuously Monitored Quantum Harmonic Oscillator”, PRX Quantum 3 1, 010327 (2022).

[2] Christopher S. Jackson, “The photodetector, the heterodyne instrument, and the principle of instrument autonomy”, arXiv:2210.11100, (2022).

[3] Christopher S. Jackson and Carlton M. Caves, “Simultaneous Measurements of Noncommuting Observables. Positive Transformations and Instrumental Lie Groups”, arXiv:2306.06167, (2023).

[4] Christopher S. Jackson and Carlton M. Caves, “Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group”, arXiv:2306.01045, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-08-17 04:00:21). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2023-08-17 04:00:19).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?