Generative Data Intelligence

Black holes as clouded mirrors: the Hayden-Preskill protocol with symmetry

Date:

Yoshifumi Nakata1,2,3, Eyuri Wakakuwa4, and Masato Koashi2

1Yukawa Institute for Theoretical Physics, Kyoto university, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
2Photon Science Center, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
3JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
4Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The Hayden-Preskill protocol is a qubit-toy model of the black hole information paradox. Based on the assumption of scrambling, it was revealed that quantum information is instantly leaked out from the quantum many-body system that models a black hole. In this paper, we extend the protocol to the case where the system has symmetry and investigate how the symmetry affects the leakage of information. We especially focus on the conservation of the number of up-spins. Developing a partial decoupling approach, we first show that the symmetry induces a delay of leakage and an information remnant. We then clarify the physics behind them: the delay is characterized by thermodynamic properties of the system associated with the symmetry, and the information remnant is closely related to the symmetry-breaking of the initial state. These relations bridge the information leakage problem to macroscopic physics of quantum many-body systems and allow us to investigate the information leakage only in terms of physical properties of the system.

The black hole information paradox is a long-standing problem in fundamental physics, highlighting a gap between general relativity and quantum mechanics. A central question is how information in a black hole leaks out as the black hole evaporates by the Hawking radiation. Based on a qubit-toy-model of a quantum black hole, it was shown that, if the black hole is fully scrambling, information leaks out in a surprisingly quick manner. This is known as the Hayden-Preskill recovery.

In this paper, we further develop the information-theoretic approach to the information paradox by taking another important feature of physical systems, i.e., symmetry, into account. We show that the presence of symmetry leads to two significant deviations from the original Hayden-Preskill recovery: one is the delay of information leakage, and the other is the information remnant. We further discover novel microscopic-macroscopic correspondences that directly connect quantum information and symmetry of quantum black holes.

The micro-macro correspondences we discovered allow one to easily deduce how information leaks out from the black hole with symmetry in terms of physical quantities without referring to too much details of information-theoretic assumptions. This will be a stepping stone toward the full understanding of the information leakage in a realistic situation, such as in the situation with energy conservation.

► BibTeX data

► References

[1] Stephen W. Hawking. “Black hole explosions?”. Nature 248, 30–31 (1974).
https:/​/​doi.org/​10.1038/​248030a0

[2] Stephen W. Hawking. “Particle creation by black holes”. Communications in Mathematical Physics 43, 199–220 (1975).
https:/​/​doi.org/​10.1007/​BF02345020

[3] Werner Israel. “Event horizons in static vacuum space-times”. Physical Review 164, 1776–1779 (1967).
https:/​/​doi.org/​10.1103/​PhysRev.164.1776

[4] Werner Israel. “Event horizons in static electrovac space-times”. Communications in Mathematical Physics 8, 245–260 (1968).
https:/​/​doi.org/​10.1007/​BF01645859

[5] Brandon Carter. “Axisymmetric black hole has only two degrees of freedom”. Physical Review Letters 26, 331–333 (1971).
https:/​/​doi.org/​10.1103/​PhysRevLett.26.331

[6] Patrick Hayden and John Preskill. “Black holes as mirrors: quantum information in random subsystems”. Journal of High Energy Physics 2007, 120 (2007).
https:/​/​doi.org/​10.1088/​1126-6708/​2007/​09/​120

[7] Yasuhiro Sekino and L Susskind. “Fast scramblers”. Journal of High Energy Physics 0810, 065 (2008). arXiv:0808.2096.
https:/​/​doi.org/​10.1088/​1126-6708/​2008/​10/​065
arXiv:0808.2096

[8] Leonard Susskind. “Addendum to fast scramblers” (2011). arXiv:1101.6048.
arXiv:1101.6048

[9] Nima Lashkari, Douglas Stanford, Matthew Hastings, Tobias Osborne, and Patrick Hayden. “Towards the fast scrambling conjecture”. Journal of High Energy Physics 1304, 022 (2013). arXiv:1101.6048.
https:/​/​doi.org/​10.1007/​jhep04(2013)022
arXiv:1101.6048

[10] Stephen H. Shenker and Douglas Stanford. “Black holes and the butterfly effect”. Journal of High Energy Physics 2014, 67 (2014).
https:/​/​doi.org/​10.1007/​JHEP03(2014)067

[11] Stephen H. Shenker and Douglas Stanford. “Stringy effects in scrambling”. Journal of High Energy Physics 2015, 132 (2015).
https:/​/​doi.org/​10.1007/​JHEP05(2015)132

[12] Daniel A. Roberts and Douglas Stanford. “Diagnosing chaos using four-point functions in two-dimensional conformal field theory”. Physical Review Letters 115, 131603 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.131603

[13] Daniel A. Roberts and Beni Yoshida. “Chaos and complexity by design”. Journal of High Energy Physics 1704, 121 (2017). arXiv:1610.04903.
https:/​/​doi.org/​10.1007/​jhep04(2017)121
arXiv:1610.04903

[14] Beni Yoshida. “Soft mode and interior operator in the hayden-preskill thought experiment”. Physical Review D 100, 086001 (2019).
https:/​/​doi.org/​10.1103/​PhysRevD.100.086001

[15] Junyu Liu. “Scrambling and decoding the charged quantum information”. Physical Review Res. 2, 043164 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043164

[16] Subir Sachdev and Jinwu Ye. “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”. Physical Review Letters 70, 3339–3342 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.70.3339

[17] Alexei Kitaev. “`Hidden correlations in the Hawking radiation and thermal noise.’, talk at KITP” (2015).

[18] Alexei Kitaev. “`A simple model of quantum holography.’, talks at KITP” (2015).

[19] Kristan Jensen. “Chaos in ${mathrm{AdS}}_{2}$ holography”. Physical Review Letters 117, 111601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.111601

[20] Juan Maldacena and Douglas Stanford. “Remarks on the sachdev-ye-kitaev model”. Physical Review D 94, 106002 (2016).
https:/​/​doi.org/​10.1103/​PhysRevD.94.106002

[21] Subir Sachdev. “Bekenstein-hawking entropy and strange metals”. Physical Review X 5, 041025 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.041025

[22] Mike Blake. “Universal charge diffusion and the butterfly effect in holographic theories”. Physical Review Letters 117, 091601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.091601

[23] Curt W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann, and Shivaji L. Sondhi. “Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws”. Physical Review X 8, 021013 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.021013

[24] Vedika Khemani, Ashvin Vishwanath, and David A. Huse. “Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws”. Physical Review X 8, 031057 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.031057

[25] Pavan Hosur, Xiao-Liang Qi, Daniel A. Roberts, and Beni Yoshida. “Chaos in quantum channels”. Journal of High Energy Physics 1602, 004 (2016). arXiv:1511.04021.
https:/​/​doi.org/​10.1007/​JHEP02(2016)004
arXiv:1511.04021

[26] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and John Preskill. “Holographic quantum error-correcting codes: toy models for the bulk/​boundary correspondence”. Journal of High Energy Physics 2015, 149 (2015).
https:/​/​doi.org/​10.1007/​JHEP06(2015)149

[27] Fernando Pastawski, Jens Eisert, and Henrik Wilming. “Towards holography via quantum source-channel codes”. Physical Review Letters 119, 020501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.020501

[28] Tamara Kohler and Toby Cubitt. “Toy models of holographic duality between local hamiltonians”. Journal of High Energy Physics 2019, 17 (2019).
https:/​/​doi.org/​10.1007/​JHEP08(2019)017

[29] Patrick Hayden and Geoffrey Penington. “Learning the alpha-bits of black holes”. Journal of High Energy Physics 2019, 7 (2019).
https:/​/​doi.org/​10.1007/​JHEP12(2019)007

[30] Kevin A. Landsman, Caroline Figgatt, Thomas Schuster, Norbert M. Linke, Beni Yoshida, Norman Y. Yao, and Christopher Monroe. “Verified quantum information scrambling”. Nature 567, 61–65 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0952-6

[31] Adam R. Brown, Hrant Gharibyan, Stefan Leichenauer, Henry W. Lin, Sepehr Nezami, Grant Salton, Leonard Susskind, Brian Swingle, and Michael Walter. “Quantum gravity in the lab: Teleportation by size and traversable wormholes” (2019). arXiv:1911.06314.
arXiv:1911.06314

[32] Sepehr Nezami, Henry W. Lin, Adam R. Brown, Hrant Gharibyan, Stefan Leichenauer, Grant Salton, Leonard Susskind, Brian Swingle, and Michael Walter. “Quantum gravity in the lab: Teleportation by size and traversable wormholes, part II” (2021). arXiv:2102.01064.
arXiv:2102.01064

[33] Tom Banks and Nathan Seiberg. “Symmetries and strings in field theory and gravity”. Physical Review D 83, 084019 (2011).
https:/​/​doi.org/​10.1103/​PhysRevD.83.084019

[34] Daniel Harlow and Hirosi Ooguri. “Constraints on symmetries from holography”. Physical Review Letters 122, 191601 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.191601

[35] Daniel Harlow and Hirosi Ooguri. “Symmetries in quantum field theory and quantum gravity”. Communications in Mathematical Physics 383, 1669–1804 (2021).
https:/​/​doi.org/​10.1007/​s00220-021-04040-y

[36] Nima Arkani-Hamed, Luboš Motl, Alberto Nicolis, and Cumrun Vafa. “The string landscape, black holes and gravity as the weakest force”. Journal of High Energy Physics 2007, 060 (2007).
https:/​/​doi.org/​10.1088/​1126-6708/​2007/​06/​060

[37] Mischa P. Woods and Álvaro M. Alhambra. “Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames”. Quantum 4, 245 (2020).
https:/​/​doi.org/​10.22331/​q-2020-03-23-245

[38] Philippe Faist, Sepehr Nezami, Victor V. Albert, Grant Salton, Fernando Pastawski, Patrick Hayden, and John Preskill. “Continuous symmetries and approximate quantum error correction”. Physical Review X 10, 041018 (2020).
https:/​/​doi.org/​10.1103/​PhysRevX.10.041018

[39] Patrick Hayden, Sepehr Nezami, Sandu Popescu, and Grant Salton. “Error correction of quantum reference frame information”. PRX Quantum 2, 010326 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010326

[40] Linghang Kong and Zi-Wen Liu. “Near-optimal covariant quantum error-correcting codes from random unitaries with symmetries”. PRX Quantum 3, 020314 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020314

[41] William K. Wootters and Wojciech H. Zurek. “A single quantum cannot be cloned”. Nature 299, 802–803 (1982).
https:/​/​doi.org/​10.1038/​299802a0

[42] Frédéric Dupuis, Mario Berta, Jürg Wullschleger, and Renato Renner. “One-shot decoupling”. Communications in Mathematical Physics 328, 251–284 (2014).
https:/​/​doi.org/​10.1007/​s00220-014-1990-4

[43] Don N. Page. “Average entropy of a subsystem”. Physical Review Letters 71, 1291–1294 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.71.1291

[44] Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. “Partial quantum information”. Nature 436, 673–676 (2005).
https:/​/​doi.org/​10.1038/​nature03909

[45] Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. “Quantum state merging and negative information”. Communications in Mathematical Physics 269, 107–136 (2007).
https:/​/​doi.org/​10.1007/​s00220-006-0118-x

[46] Patrick Hayden, Michał Horodecki, Andreas Winter, and Jon Yard. “A decoupling approach to the quantum capacity”. Open Systems & Information Dynamics 15, 7–19 (2008).
https:/​/​doi.org/​10.1142/​S1230161208000043

[47] Eyuri Wakakuwa and Yoshifumi Nakata. “One-shot randomized and nonrandomized partial decoupling”. Communications in Mathematical Physics 386, 589–649 (2021).
https:/​/​doi.org/​10.1007/​s00220-021-04136-5

[48] Renato Renner. “Security of quantum key distribution”. PhD thesis. ETH Zurich. (2005).
https:/​/​doi.org/​10.48550/​ARXIV.QUANT-PH/​0512258

[49] Marco Tomamichel. “Quantum information processing with finite resources”. SpringerBriefs in Mathematical Physics. Springer Cham. (2016).
https:/​/​doi.org/​10.1007/​978-3-319-21891-5

[50] Elihu Lubkin. “Entropy of an n‐system from its correlation with a $k$‐reservoir”. Journal of Mathematical Physics 19, 1028–1031 (1978).
https:/​/​doi.org/​10.1063/​1.523763

[51] Patrick Hayden, Debbie W. Leung, and Andreas Winter. “Aspects of generic entanglement”. Communications in Mathematical Physics 265, 95–117 (2006).
https:/​/​doi.org/​10.1007/​s00220-006-1535-6

[52] Masato Koashi. “Complementarity, distillable secret key, and distillable entanglement” (2007). arXiv:0704.3661.
arXiv:0704.3661

[53] Michael A. Nielsen and Isaac L. Chuang. “Quantum computation and quantum information: 10th anniversary edition”. Cambridge University Press. (2010).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[54] Hiroyasu Tajima and Keiji Saito. “Universal limitation of quantum information recovery: symmetry versus coherence” (2021). arXiv:2103.01876.
arXiv:2103.01876

[55] Aram W. Harrow and Richard A. Low. “Efficient quantum tensor product expanders and k-designs”. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Pages 548–561. Berlin, Heidelberg (2009). Springer Berlin Heidelberg.
https:/​/​doi.org/​10.1007/​978-3-642-03685-9_41

[56] Fernando G. S. L. Brandão, Aram W. Harrow, and Michał Horodecki. “Local random quantum circuits are approximate polynomial-designs”. Communications in Mathematical Physics 346, 397–434 (2016).
https:/​/​doi.org/​10.1007/​s00220-016-2706-8

[57] Yoshifumi Nakata, Christoph Hirche, Masato Koashi, and Andreas Winter. “Efficient quantum pseudorandomness with nearly time-independent hamiltonian dynamics”. Physical Review X 7, 021006 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.021006

[58] Jonas Haferkamp, Felipe Montealegre-Mora, Markus Heinrich, Jens Eisert, David Gross, and Ingo Roth. “Efficient unitary designs with a system-size independent number of non-clifford gates”. Communications in Mathematical Physics 397, 995–1041 (2023).
https:/​/​doi.org/​10.1007/​s00220-022-04507-6

[59] Iman Marvian. “Restrictions on realizable unitary operations imposed by symmetry and locality”. Nature Physics 18, 283–289 (2022).
https:/​/​doi.org/​10.1038/​s41567-021-01464-0

[60] Beni Yoshida and Alexei Kitaev. “Efficient decoding for the hayden-preskill protocol” (2017). arXiv:1710.03363.
arXiv:1710.03363

[61] Yoshifumi Nakata, Takaya Matsuura, and Masato Koashi. “Constructing quantum decoders based on complementarity principle” (2022). arXiv:2210.06661.
arXiv:2210.06661

[62] Michel Ledoux. “The Concentration of Measure Phenomenon”. Mathematical Surveys and Monographs. American Mathematical Society Providence, RI. (2001).
https:/​/​doi.org/​10.1090/​surv/​089

[63] Elizabeth Meckes. “Concentration of measure and the compact classical matrix groups”. https:/​/​www.math.ias.edu/​files/​wam/​Haar_notes-revised.pdf (2014).
https:/​/​www.math.ias.edu/​files/​wam/​Haar_notes-revised.pdf

[64] Andreas Winter. “Coding theorem and strong converse for quantum channels”. IEEE Transactions on Information Theory 45, 2481–2485 (1999).
https:/​/​doi.org/​10.1109/​18.796385

Cited by

[1] Hiroyasu Tajima and Keiji Saito, “Universal limitation of quantum information recovery: symmetry versus coherence”, arXiv:2103.01876, (2021).

[2] Hiroyasu Tajima, Ryuji Takagi, and Yui Kuramochi, “Universal trade-off structure between symmetry, irreversibility, and quantum coherence in quantum processes”, arXiv:2206.11086, (2022).

[3] Yoshifumi Nakata, Da Zhao, Takayuki Okuda, Eiichi Bannai, Yasunari Suzuki, Shiro Tamiya, Kentaro Heya, Zhiguang Yan, Kun Zuo, Shuhei Tamate, Yutaka Tabuchi, and Yasunobu Nakamura, “Quantum Circuits for Exact Unitary t -Designs and Applications to Higher-Order Randomized Benchmarking”, PRX Quantum 2 3, 030339 (2021).

[4] Linghang Kong and Zi-Wen Liu, “Near-Optimal Covariant Quantum Error-Correcting Codes from Random Unitaries with Symmetries”, PRX Quantum 3 2, 020314 (2022).

[5] Kanato Goto, Masahiro Nozaki, Shinsei Ryu, Kotaro Tamaoka, and Mao Tian Tan, “Scrambling and Recovery of Quantum Information in Inhomogeneous Quenches in Two-dimensional Conformal Field Theories”, arXiv:2302.08009, (2023).

[6] Zi-Wen Liu and Sisi Zhou, “Approximate symmetries and quantum error correction”, arXiv:2111.06355, (2021).

[7] Pak Hang Chris Lau, Toshifumi Noumi, Yuhei Takii, and Kotaro Tamaoka, “Page curve and symmetries”, Journal of High Energy Physics 2022 10, 15 (2022).

[8] Ryota Katsube, Masanao Ozawa, and Masahiro Hotta, “Limitations of Quantum Measurements and Operations of Scattering Type under the Energy Conservation Law”, arXiv:2211.13433, (2022).

[9] Beni Yoshida, “Recovery algorithms for Clifford Hayden-Preskill problem”, arXiv:2106.15628, (2021).

[10] Eyuri Wakakuwa and Yoshifumi Nakata, “One-Shot Randomized and Nonrandomized Partial Decoupling”, Communications in Mathematical Physics 386 2, 589 (2021).

[11] Masahiro Fujii, Ryosuke Kutsuzawa, Yasunari Suzuki, Yoshifumi Nakata, and Masaki Owari, “Characterizing quantum pseudorandomness by machine learning”, arXiv:2205.14667, (2022).

[12] Yoshifumi Nakata, Takaya Matsuura, and Masato Koashi, “Constructing quantum decoders based on complementarity principle”, arXiv:2210.06661, (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2023-02-22 02:57:49). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2023-02-22 02:57:47).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?