Generative Data Intelligence

Analyticity constraints bound the decay of the spectral form factor

Date:

Pablo Martinez-Azcona and Aurélia Chenu

Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum chaos cannot develop faster than $lambda leq 2 pi/(hbar beta)$ for systems in thermal equilibrium [Maldacena, Shenker & Stanford, JHEP (2016)]. This `MSS bound’ on the Lyapunov exponent $lambda$ is set by the width of the strip on which the regularized out-of-time-order correlator is analytic. We show that similar constraints also bound the decay of the spectral form factor (SFF), that measures spectral correlation and is defined from the Fourier transform of the two-level correlation function. Specifically, the $textit{inflection exponent}$ $eta$, that we introduce to characterize the early-time decay of the SFF, is bounded as $etaleq pi/(2hbarbeta)$. This bound is universal and exists outside of the chaotic regime. The results are illustrated in systems with regular, chaotic, and tunable dynamics, namely the single-particle harmonic oscillator, the many-particle Calogero-Sutherland model, an ensemble from random matrix theory, and the quantum kicked top. The relation of the derived bound with other known bounds, including quantum speed limits, is discussed.

[embedded content]

Classical chaos is quantified using the Lyapunov exponent, which measures the distance between trajectories with slightly different initial conditions. A quantum analog of this exponent has been defined from a 4-point Out of Time Order Correlator, and it is known to be bounded by the temperature of the system: the hotter a quantum system is, the more chaotic it can be.

Using tools from complex analysis, we find a similar bound on the initial decay of a quantity called the Spectral Form Factor (SFF), which is defined from the system partition function at complex temperatures. The hotter the system, the faster the early-time decay of the SFF can be. This bound is universal and not restricted to chaotic dynamics. We illustrate the results in systems that are conceptually very different and discuss the connections between other known bounds, such as quantum speed limits.

► BibTeX data

► References

[1] L. Mandelstam and I. Tamm, in Selected Papers, edited by I. E. Tamm, B. M. Bolotovskii, V. Y. Frenkel, and R. Peierls (Springer, Berlin, Heidelberg, 1991) pp. 115–123.
https:/​/​doi.org/​10.1007/​978-3-642-74626-0_8

[2] N. Margolus and L. B. Levitin, Physica D: Nonlinear Phenomena Proceedings of the Fourth Workshop on Physics and Consumption, 120, 188 (1998).
https:/​/​doi.org/​10.1016/​S0167-2789(98)00054-2

[3] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.160502

[4] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Phys. Rev. Lett. 110, 050403 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.050403

[5] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, Phys. Rev. Lett. 110, 050402 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.050402

[6] P. Pfeifer and J. Fröhlich, Rev. Mod. Phys. 67, 759 (1995).
https:/​/​doi.org/​10.1103/​RevModPhys.67.759

[7] G. Muga, R. S. Mayato, and I. Egusquiza, eds., Time in Quantum Mechanics, 2nd ed., Lecture Notes in Physics (Springer-Verlag, Berlin Heidelberg, 2008).
https:/​/​www.springer.com/​gp/​book/​9783540734727

[8] G. Muga, A. Ruschhaupt, and A. Campo, Time in Quantum Mechanics-Vol. 2, Vol. 789 (2009).
https:/​/​link.springer.com/​book/​10.1007/​978-3-642-03174-8

[9] M. R. Frey, Quantum Inf Process 15, 3919 (2016).
https:/​/​doi.org/​10.1007/​s11128-016-1405-x

[10] S. Deffner and S. Campbell, J. Phys. A: Math. Theor. 50, 453001 (2017).
https:/​/​doi.org/​10.1088/​1751-8121/​aa86c6

[11] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, Phys. Rev. Lett. 120, 070401 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.070401

[12] M. Okuyama and M. Ohzeki, Phys. Rev. Lett. 120, 070402 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.070402

[13] P. M. Poggi, S. Campbell, and S. Deffner, PRX Quantum 2, 040349 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040349

[14] L. P. García-Pintos, S. B. Nicholson, J. R. Green, A. del Campo, and A. V. Gorshkov, Physical Review X 12, 011038 (2022).
https:/​/​doi.org/​10.1103/​PhysRevX.12.011038

[15] J. D. Bekenstein, Phys. Rev. Lett. 46, 623 (1981).
https:/​/​doi.org/​10.1103/​PhysRevLett.46.623

[16] S. Lloyd, Nature 406, 1047 (2000).
https:/​/​doi.org/​10.1038/​35023282

[17] A. del Campo, J. Molina-Vilaplana, and J. Sonner, Phys. Rev. D 95, 126008 (2017).
https:/​/​doi.org/​10.1103/​PhysRevD.95.126008

[18] M. Bukov, D. Sels, and A. Polkovnikov, Physical Review X 9, 011034 (2019).
https:/​/​doi.org/​10.1103/​PhysRevX.9.011034

[19] T. Fogarty, S. Deffner, T. Busch, and S. Campbell, Physical Review Letters 124, 110601 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110601

[20] A. del Campo, Physical Review Letters 126, 180603 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.180603

[21] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.240501

[22] K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, and A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.100602

[23] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photon 5, 222 (2011).
https:/​/​doi.org/​10.1038/​nphoton.2011.35

[24] M. Beau and A. del Campo, Physical Review Letters 119, 010403 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.010403

[25] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energ. Phys. 2016, 106 (2016).
https:/​/​doi.org/​10.1007/​JHEP08(2016)106

[26] A. I. Larkin and Y. N. Ovchinnikov, Soviet Journal of Experimental and Theoretical Physics 28, 1200 (1969).
http:/​/​adsabs.harvard.edu/​abs/​1969JETP…28.1200L

[27] K. Hashimoto, K. Murata, and R. Yoshii, J. High Energy Phys. 2017, 138 (2017).
https:/​/​doi.org/​10.1007/​JHEP10(2017)138

[28] M. Hanada, H. Shimada, and M. Tezuka, Phys. Rev. E 97, 022224 (2018).
https:/​/​doi.org/​10.1103/​PhysRevE.97.022224

[29] H. Gharibyan, M. Hanada, B. Swingle, and M. Tezuka, J. High Energy Phys. 2019, 82 (2019).
https:/​/​doi.org/​10.1007/​JHEP04(2019)082

[30] T. Akutagawa, K. Hashimoto, T. Sasaki, and R. Watanabe, J. High Energy Phys. 2020, 13 (2020).
https:/​/​doi.org/​10.1007/​JHEP08(2020)013

[31] B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T. Olund, J. E. Moore, D. Stanford, and N. Y. Yao, Phys. Rev. Lett. 126, 030602 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.030602

[32] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett. 118, 086801 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.086801

[33] H. Shen, P. Zhang, R. Fan, and H. Zhai, Phys. Rev. B 96, 054503 (2017).
https:/​/​doi.org/​10.1103/​PhysRevB.96.054503

[34] N. Tsuji, T. Shitara, and M. Ueda, Phys. Rev. E 97, 012101 (2018a).
https:/​/​doi.org/​10.1103/​PhysRevE.97.012101

[35] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F. Haake, and P. Zoller, npj Quantum Inf 5, 1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0192-5

[36] E. M. Fortes, I. García-Mata, R. A. Jalabert, and D. A. Wisniacki, Phys Rev E 100, 042201 (2019).
https:/​/​doi.org/​10.1103/​PhysRevE.100.042201

[37] J. Chávez-Carlos, B. López-del Carpio, M. A. Bastarrachea-Magnani, P. Stránský, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch, Phys. Rev. Lett. 122, 024101 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.024101

[38] A. Keles, E. Zhao, and W. V. Liu, Phys. Rev. A 99, 053620 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.053620

[39] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey, Nat. Commun. 10, 1581 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-09436-y

[40] S. PG, V. Madhok, and A. Lakshminarayan, J. Phys. D: Appl. Phys. 54, 274004 (2021).
https:/​/​doi.org/​10.1088/​1361-6463/​abf8f3

[41] S. Pilatowsky-Cameo, J. Chávez-Carlos, M. A. Bastarrachea-Magnani, P. Stránský, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch, Phys. Rev. E 101, 010202 (2020).
https:/​/​doi.org/​10.1103/​PhysRevE.101.010202

[42] Z. Wang, J. Feng, and B. Wu, Phys. Rev. Research 3, 033239 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033239

[43] C. Yin and A. Lucas, Phys. Rev. A 103, 042414 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.042414

[44] A. Kitaev, “Hidden Correlations in the Hawking Radiation and Thermal Noise,” (2014), talk given at Fundamental Physics Prize Symposium.
https:/​/​online.kitp.ucsb.edu/​online/​joint98/​kitaev/​rm/​jwvideo.html

[45] J. Kurchan, J. Stat. Phys. 171, 965 (2018).
https:/​/​doi.org/​10.1007/​s10955-018-2052-7

[46] N. Tsuji, T. Shitara, and M. Ueda, Phys. Rev. E 98, 012216 (2018b).
https:/​/​doi.org/​10.1103/​PhysRevE.98.012216

[47] G. J. Turiaci, J. High Energy Phys. 2019, 99 (2019).
https:/​/​doi.org/​10.1007/​JHEP07(2019)099

[48] C. Murthy and M. Srednicki, Phys. Rev. Lett. 123, 230606 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.230606

[49] S. Kundu, J. High Energ. Phys. 2022, 10 (2022).
https:/​/​doi.org/​10.1007/​JHEP04(2022)010

[50] S. Pappalardi and J. Kurchan, SciPost Physics 13, 006 (2022).
https:/​/​doi.org/​10.21468/​SciPostPhys.13.1.006

[51] S. Pappalardi, L. Foini, and J. Kurchan, SciPost Physics 12, 130 (2022).
https:/​/​doi.org/​10.21468/​SciPostPhys.12.4.130

[52] S. Grozdanov, Phys. Rev. Lett. 126, 051601 (2021a), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.051601

[53] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.135704

[54] J. L. F. Barbón and E. Rabinovici, J. High Energy Phys. 2003, 047 (2003).
https:/​/​doi.org/​10.1088/​1126-6708/​2003/​11/​047

[55] J. Barbón and E. Rabinovici, Fortschritte der Physik 52, 642 (2004).
https:/​/​doi.org/​10.1002/​prop.200410157

[56] K. Papadodimas and S. Raju, Phys. Rev. Lett. 115, 211601 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.211601

[57] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, J. High Energ. Phys. 2017, 118 (2017a).
https:/​/​doi.org/​10.1007/​JHEP05(2017)118

[58] J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, J. High Energy Phys. 2017, 48 (2017b).
https:/​/​doi.org/​10.1007/​JHEP11(2017)048

[59] M. L. Mehta, Random Matrices (Elsevier/​Academic Press, 2004).
https:/​/​www.elsevier.com/​books/​random-matrices/​lal-mehta/​978-0-12-088409-4

[60] F. Haake, M. Kuś, and R. Scharf, Z. Physik B – Condensed Matter 65, 381 (1987).
https:/​/​doi.org/​10.1007/​BF01303727

[61] B. Bertini, P. Kos, and T. Prosen, Physical Review Letters 121, 264101 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.264101

[62] Z. Xu, L. P. García-Pintos, A. Chenu, and A. del Campo, Phys. Rev. Lett. 122, 014103 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.014103

[63] A. del Campo and T. Takayanagi, J. High Energy Phys. 2020, 170 (2020).
https:/​/​doi.org/​10.1007/​JHEP02(2020)170

[64] Z. Xu, A. Chenu, T. Prosen, and A. del Campo, Phys. Rev. B 103, 064309 (2021).
https:/​/​doi.org/​10.1103/​PhysRevB.103.064309

[65] J. Cornelius, Z. Xu, A. Saxena, A. Chenu, and A. del Campo, Phys. Rev. Lett. 128, 190402 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.190402

[66] R. E. Prange, Phys. Rev. Lett. 78, 2280 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2280

[67] F. Calogero, Journal of Mathematical Physics 12, 419 (2003), publisher: American Institute of PhysicsAIP.
https:/​/​doi.org/​10.1063/​1.1665604

[68] B. Sutherland, J. Math. Phys. 12, 246 (1971), publisher: American Institute of Physics.
https:/​/​doi.org/​10.1063/​1.1665584

[69] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend, and A. Van Proeyen, Phys. Rev. Lett. 81, 4553 (1998), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.4553

[70] G. W. Gibbons and P. K. Townsend, Physics Letters B 454, 187 (1999).
https:/​/​doi.org/​10.1016/​S0370-2693(99)00266-X

[71] O. Lechtenfeld and S. Nampuri, Physics Letters B 753, 263 (2016).
https:/​/​doi.org/​10.1016/​j.physletb.2015.11.083

[72] F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.67.937

[73] Y.-S. Wu, Phys. Rev. Lett. 73, 922 (1994), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.73.922

[74] M. V. N. Murthy and R. Shankar, Phys. Rev. Lett. 73, 3331 (1994), publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.73.3331

[75] J. Jaramillo, M. Beau, and A. d. Campo, New J. Phys. 18, 075019 (2016), publisher: IOP Publishing.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​7/​075019

[76] A. d. Campo, New J. Phys. 18, 015014 (2016), publisher: IOP Publishing.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​1/​015014

[77] E. P. Wigner, Mathematical Proceedings of the Cambridge Philosophical Society 47, 790 (1951).
https:/​/​doi.org/​10.1017/​S0305004100027237

[78] E. P. Wigner, in Conference on neutron physics by time-of-flight (1956) pp. 1–2.

[79] A. Chenu, I. L. Egusquiza, J. Molina-Vilaplana, and A. del Campo, Sci. Rep. 8, 12634 (2018).
https:/​/​doi.org/​10.1038/​s41598-018-30982-w

[80] A. Chenu, J. Molina-Vilaplana, and A. del Campo, Quantum 3, 127 (2019).
https:/​/​doi.org/​10.22331/​q-2019-03-04-127

[81] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984a).
https:/​/​doi.org/​10.1103/​PhysRevLett.52.1

[82] O. Bohigas, M. J. Giannoni, and C. Schmit, J. Physique Lett. 45, 1015 (1984b).
https:/​/​doi.org/​10.1051/​jphyslet:0198400450210101500

[83] M. Kuś, R. Scharf, and F. Haake, Z. Physik B – Condensed Matter 66, 129 (1987).
https:/​/​doi.org/​10.1007/​BF01312770

[84] R. Scharf, B. Dietz, M. Kuś, F. Haake, and M. V. Berry, EPL 5, 383 (1988).
https:/​/​doi.org/​10.1209/​0295-5075/​5/​5/​001

[85] F. Haake and D. L. Shepelyansky, EPL 5, 671 (1988).
https:/​/​doi.org/​10.1209/​0295-5075/​5/​8/​001

[86] R. F. Fox and T. C. Elston, Phys. Rev. E 50, 2553 (1994).
https:/​/​doi.org/​10.1103/​PhysRevE.50.2553

[87] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S. Jessen, Nature 461, 768 (2009).
https:/​/​doi.org/​10.1038/​nature08396

[88] F. Haake, Quantum Signatures of Chaos (Springer Berlin Heidelberg, 2010).
https:/​/​link.springer.com/​book/​10.1007/​978-3-642-05428-0

[89] J. Wang and J. Gong, Phys. Rev. Lett. 102, 244102 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.244102

[90] J. Wang and J. Gong, Phys. Rev. E 81, 026204 (2010).
https:/​/​doi.org/​10.1103/​PhysRevE.81.026204

[91] K. Bhattacharyya, J. Phys. A: Math. Gen. 16, 2993 (1983).
https:/​/​doi.org/​10.1088/​0305-4470/​16/​13/​021

[92] S. A. Hartnoll and A. P. Mackenzie, “Planckian Dissipation in Metals,” (2022), arXiv:2107.07802 [cond-mat, physics:hep-th].
https:/​/​doi.org/​10.48550/​arXiv.2107.07802
arXiv:2107.07802

[93] S. Grozdanov, Physical Review Letters 126, 051601 (2021b).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.051601

Cited by

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?